博碩士論文 110521098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:18.190.156.214
姓名 陳柏鈞(Bo-Jun Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵
(Scattering Parameter Characterization of Four-Port Fixtures Using Time Domain Gating and Mason’s Gain Formula)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型三維光學影像量測系統之設計與控制
★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測
★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統
★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計
★ 通過強化學習與積分滑模動量觀測器實現機器手臂的強健近佳PD控制策略★ 基於類代理注意力特徵融合模型的聯合 實體關係抽取方法
★ 新型修正式柵欄軌跡結合擴增狀態估測 滑模回授與多自由度Bouc-Wen遲滯前饋補償 控制器給予壓電平台快速精確追蹤★ 結合點雲密度熵計算方法和運動回復結構在虛幻引擎中進行影像三維點雲模型及渲染重建
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 由於目前高科技的快速進步,使得儀器結構設計越加複雜,需藉由多個零組件利用夾具來相互連接與合成。一般訊號在通過夾具時在不同頻率下會造成儀器訊號的衰減與失真。散射參數是用於評估儀器或傳輸線性能的指標,通常由網路分析儀量測。量測結果包含了訊號通過儀器本身與連接夾具的效應。如果要評估儀器的傳輸性能而不包含夾具效應,則需要使用校正技術將夾具效應從測量結果中移除。本論文將傳統兩埠夾具的表徵方法擴展到四埠,給予構件與實現一個新型四埠夾具表徵的方法。因網路分析儀量測的頻域資料S參數可以計算出反射儀TDR量測的時域資料,首先我們將2x-Thru結構的S參數轉換為TDR,其次透過時域門控方法分離出兩側夾具的部分S參數,然後使用梅森增益公式將剩餘S參數求出,最後使用去嵌入方法,將S參數轉換為T參數並透過矩陣運算結果來移除夾具效應,藉此得到待測物的S參數。所提出的方法將與著名大廠Keysight Technologies開發的Automatic Fixture Removal (AFR)演算法比較以驗證其效果。
摘要(英) Due to the rapid advancement in high technology, the design of instrument structures has become increasingly complex, requiring the use of fixtures to interconnect and assemble multiple components. When signals pass through these fixtures, they can experience attenuation and distortion at different frequencies, resulting in measurement inaccuracies. Scattering parameters are indicators used to evaluate the performance of instruments or transmission lines. They are typically measured using a network analyzer. The measurement results include the effects of both the instrument itself and the connecting fixtures. If one intends to assess the transmission performance of the instrument while excluding the influence of the fixtures, it becomes necessary to employ calibration techniques to remove the effects of the fixtures from the measurement results. This paper extends the conventional two-port fixture characterization method to a four-port configuration, presenting a novel approach for four-port fixture characterization. Since the frequency domain data, represented by S-parameters, measured by a network analyzer can be converted to time domain data obtained from reflectometer time-domain reflectometry (TDR) measurements, our method first converts the S-parameters of a 2x-Thru structure to TDR data. Then, using the time domain gating method, we separate the S-parameters corresponding to the two sides of the fixture. The remaining S-parameters are calculated using Mason’s gain formula. Finally, through the de-embedding process, the S-parameters are transformed into T-parameters, and the fixture effects are removed using matrix operations, yielding the S-parameters of the device under test (DUT). The proposed method will be compared with the Automatic Fixture Removal (AFR) algorithm developed by the renowned company Keysight Technologies to validate its effectiveness.
關鍵字(中) ★ 四埠夾具
★ S參數
★ 夾具表徵
★ 去嵌入
★ 時域門控
★ 梅森增益公式
關鍵字(英) ★ Four-port Fixture
★ S-parameter
★ fixture characterization
★ de-embedding
★ time domain gating
★ Mason’s gain formula
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
Table of Content v
List of Figures vi
List of Tables vii
Explanation of Symbols viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 4
1.2.1 Conventional Calibration Technique 4
1.2.2 Fixture Characterization and De-embedding Technique 8
1.3 Contribution 15
1.4 Thesis Organization 17
Chapter 2 Preliminaries 18
2.1 Scattering Parameter 18
2.2 4-port Network S-parameter 23
2.3 Relationship between TDR and S-parameter 27
Chapter 3 Fixture Characterization in Time Domain 30
3.1 An Overview of The Fixture Characterization Method 30
3.2 Calculating Reflection S-parameters in Time Domain 33
3.2.1 Calculating TDR Data by Inverse Fourier Transform 34
3.2.2 Time Domain Gating 36
3.2.3 Ringing Data Processing 41
3.2.4 Transferring New TDR Data to S-parameter by Fourier Transform 45
Chapter 4 Fixture Characterization in Frequency Domain and De-embedding 47
4.1 Calculating S-parameters of 2-port Network by Mason’s Gain Formula 48
4.2 Calculating S-parameters of 4-port Network 50
4.3 De-embedding Technique 53
Chapter 5 Experiments 54
5.1 Experiment Setup 54
5.2 Experiment Results 57
Chapter 6 Conclusions 67
Reference 68
參考文獻 [1] W. Kruppa and K. F. Sodomsky, “An explicit solution for the scattering parameters of a linear two-port measured with an imperfect test set (correspondence),” IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 1, pp. 122-123, Jan. 1971.
[2] D. Rytting, “Advances in microwave error correction techniques,” Proc. Hewlett-Packard RF and Microwave Measurement Symp. and Exhibition, June 1987, pp. 6201-6302.
[3] A. Ferrero and U. Pisani, “QSOLT: A new fast calibration algorithm for two port s parameter measurements,” 38th ARFTG Conference Digest, San Diego, CA, USA, 1991.
[4] J. A. Jargon, R. B. Marks, and D. K. Rytting, “Robust SOLT and alternative calibrations for four-sampler vector network analyzers,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 10, pp. 2008-2013, Oct. 1999.
[5] R. A. Ginley, “Establishing traceability for SOLT calibration kits,” 2017 90th ARFTG Microwave Measurement Symposium (ARFTG), Boulder, CO, USA, 2017.
[6] C. Liu, A. Wu, C. Li, and N. Ridler, “A new SOLT calibration method for leaky on-wafer measurements using a 10-term error model,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3894-3900, Aug. 2018.
[7] T. Reveyrand, S. Hernández, S. Mons, and E. Ngoya, “SOLT and SOLR calibration methods using a single multiport “thru” standard connection,” 95th ARFTG Microwave Measurement Conference (ARFTG), Los Angeles, CA, USA, 2020.
[8] G. F. Engen and C. A. Hoer, “Thru-Reflect-Line: An improved technique for calibrating the dual six-port automatic network analyzer,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, Dec. 1979.
[9] J. E. Zuniga-Juarez, J. A. Reynoso-Hernandez, and M. C. Maya-Sanchez, “An improved multiline TRL method,” 2006 67th ARFTG Conference, San Francisco, CA, USA, 2006.
[10] A. Rajagopal, B. Achkir, M. Koledintseva, A. Koul, and J. Drewniak, “Material parameter extraction using Time-Domain TRL (t-TRL) measurements,” IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 2009.
[11] J. Stenarson and K. Yhland, “A reformulation and stability study of TRL and LRM using S-parameters,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2800-2807, Nov. 2009.
[12] M. Kotzev, H. -D. Brüns, and C. Schuster, “Effect of via stubs on the TRL calibration technique for measurement of embedded multilayer structures,” The 40th European Microwave Conference, Paris, France, 2010.
[13] C. Wu, Y. Xu, J. Li, and S. Gao, “Effects of the length of thru on the measurement precision in TRL technique,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 12, pp. 905-907, Dec. 2014.
[14] J. Chen, L. Zhang, D. Li, J. Zhou, C. Wu, L. Jiang, and E.-P. Li, “2-port GSG probe calibration using TRL and 16-term error model up to 100GHz,” Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 2022.
[15] Ka Mun Ho, K. Vaz, and M. Caggiano, “Scattering parameter characterization of differential four-port networks using a two-port vector network analyzer,” Proceedings Electronic Components and Technology, Lake Buena Vista, FL, USA, 2005.
[16] B. Archambeault, S. Connor, and J. C. Diepenbrock, “Time domain gating of frequency domain S-parameter data to remove connector end effects for PCB and cable applications,” IEEE International Symposium on Electromagnetic Compatibility, Portland, OR, USA, 2006.
[17] V. Adamian and B. Cole, “A novel procedure for characterization of multiport high-speed balanced devices,” IEEE International Symposium on Electromagnetic Compatibility., Portland, OR, USA, 2006.
[18] J. Dunsmore, N. Cheng, and Y.-x. Zhang, “Characterizations of asymmetric fixtures with a two-gate approach,” 77th ARFTG Microwave Measurement Conference, Baltimore, MD, USA, 2011.
[19] J. Cho, B.-S. Kim, J. Jeong, J. Kim, K. Kim, K. Hwang, H. Lee, S. Jeung, and S. Ahn, “A two-line time-domain gating method for characterization of test fixture with via hole discontinuity,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 10, pp. 936-938, Oct. 2017.
[20] C. Xie and R. Xu, “Using AFR to improve antenna system′s measurement accuracy,” Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015.
[21] C. Yoon, M. Tsiklauri, M. Zvonkin, F. Fan, J. L. Drewniak, A. Razmadze, A. Aflaki, J. Kim, and Q. B. Chen, “Design criteria of automatic fixture removal (AFR) for asymmetric fixture de-embedding,” IEEE International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, USA, 2014.
[22] Y. Chen, B. Chen, J. He, R. Zai, J. Fan, and J. Drewniak, “De-embedding comparisons of 1X-Reflect SFD, 1-port AFR, and 2X-Thru SFD,” IEEE International Symposium on Electromagnetic Compatibility and IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Suntec City, Singapore, 2018.
[23] B. Chen, X. Ye, B. Samaras, and J. Fan, “A novel de-embedding method suitable for transmission-line measurement,” Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, Taiwan, 2015.
[24] B. Chen, J. He, X. Sun, Y. Guo, S. Jin, X. Ye, and J. Fan, “Differential S-Parameter De-embedding for 8-Port Network,” IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI), Long Beach, CA, USA, 2018.
[25] B. Chen, X. Ye, and J. Fan, “2X-Thru De-embedding for Non-2N Even Number Port Network,” IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity, New Orleans, LA, USA, 2019.
[26] J. -Y. Ye, J. Fan, X. Cao, Q. -M. Cai, Y. Zhu, and Y. Zhu, “A 2x-Thru Standard De-embedding Method of Surface Components in High-Speed PCBs,” IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Denver, CO, USA, 2022.
[27] S. -J. Moon, X. Ye, and R. Smith, “Comparison of TRL calibration vs. 2x thru de-embedding methods,” IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, Santa Clara, CA, USA, 2015.
[28] B. Chen, M. Tsiklauri, C. Wu, S. Jin, J. Fan, X. Ye, and B. Samaras, “Analytical and numerical sensitivity analyses of fixtures de-embedding,” IEEE International Symposium on Electromagnetic Compatibility (EMC), Ottawa, ON, Canada, 2016.
[29] M. Resso, E. Bogatin, and A. Vatsyayan, “A new method to verify the accuracy of de-embedding algorithms,” IEEE MTT-S Latin America Microwave Conference (LAMC), Puerto Vallarta, Mexico, 2016.
[30] H. Barnes and J. Moreira, “Verifying the accuracy of 2x-Thru de-embedding for unsymmetrical test fixtures,” IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2017.
[31] K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Transactions on Microwave Theory and Techniques, vol. 13, no. 2, pp. 194-202, March 1965.
[32] A. Huynh, M. Karlsson, and S. Gong, “Mixed mode S-Parameters and Conversion Techniques,” Advanced Microwave Circuits and Systems, Apr. 01, 2010.
[33] A. S. Ali and R. Mittra, “Time-Domain Reflectometry using Scattering Parameters and a De-Embedding Application,” Electromagnetic Communication Laboratory Report, No. 86-4, May 1986.
[34] S. J. Mason, “Feedback Theory-Further Properties of Signal Flow Graphs,” Proceedings of the IRE, vol. 44, no. 7, pp. 920-926, July 1956.
[35] William S. Cleveland. (1979), “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association 74: 829-836.
[36] William S. Cleveland and Susan J. Devlin (1988), “Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting,” Journal of the American Statistical Association 83: 596-610.
[37] Adrien-Marie Legendre (1805), Nouvelles méthodes pour la détermination des orbites des comètes [New Methods for the Determination of the Orbits of Comets] (in French), Paris: F. Didot.
[38] Stephen H. Hall and Howard L. Heck, “Appendix B: FourPort Conversions between T and S Parameters,” Advanced Signal Integrity for High-Speed Digital Designs, IEEE, 2009.
[39] https://www.keysight.com/us/en/product/E5080B/e5080b-ena-vector-network-analyzer.html
[40] https://www.keysight.com/us/en/product/N4692D/electronic-calibration-module-ecal-40-ghz-2-92-mm-2-port.html
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明