以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:96 、訪客IP:3.129.194.182
姓名 楊博安(Po-An Yang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 650V 加強型氮化鎵高電子遷移率電晶體在不同閘極開關偏壓下之動態電阻分析
(Dynamic On-resistance Degradation under Positive/Negative Gate and Drain Biases in E-mode p-GaN Gate AlGaN/GaN HEMT)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究利用蕭特基 p 型氮化鎵閘極高電子遷移率電晶體架構之 650 V商用元件 GaN systems GS66508B,進行三大項目之探討與分析: (1)元件靜態特性的探討並著重在靜態導通電阻,(2)動態量測下,不同閘極開啟和汲極關閉電壓對於動態電阻的影響,(3) 動態量測下,不同閘極關閉和汲極關閉電壓對於動態電阻的影響。
元件動態開關量測所使用的平台為雙脈衝量測 (Double Pulse Test, DPT) 方法,主要雙脈衝量測的操作模式有電阻式負載和電感式負載,而本研究動態量測所使用的模式為電阻式負載,其模式可以減少因切換過程中寄生效應造成的震盪以得到更精準開關過程結果,其開關切換為硬切換且可以減少熱效應對動態電阻的影響。
對於元件靜態特性中,標準的閘極電壓開啟電壓為 6 V,其中發覺閘極電壓開啟電壓為 7 V時,靜態導通電阻相較於 6 V開啟有細微的改善;相反的在低的開啟電壓,元件特性有變差的趨勢。進一步對於動態量測下的閘極開啟電壓進行探討,發現在動態量測上此差異又更加明顯,其中發現在給予汲極高關閉電壓會使元件的臨界電壓向正偏移,導致需更正的閘極電壓方能使元件完全開啟。
另一方面,為了增加系統切換時的穩定性與安全性,當元件關閉時會給予負閘極電壓作為關閉,此負閘極電壓的對於元件的影響也是重要的討論事項。不同閘極關閉對於動態電阻的影響不盡相同,但整體可以觀察到越負的閘極關閉電壓會加劇動態電阻的增加。主要的物理機制有兩個可能,其一,在關閉時汲極的高偏壓會使的閘極和汲極之間形成高電場而產生碰撞游離(Impact Ionization)進而電子電洞對,而其中電洞原本可以扮演釋放陷阱 (detrap) 的角色,被負閘極關閉所吸引至閘極端,因而在多重效應加乘下元件的動態電阻會極劇增加;其二,在元件關閉時給予閘極負偏壓,會使的原本在 p-GaN 層中的電洞被吸引至閘極電壓,而元件開啟瞬間因原本在 p-GaN 層中的電洞無法立即恢復,造成元件臨界電壓向右偏移的情況發生,使的動態電阻極劇增加。摘要(英) This study utilizes a Schottky p-type GaN high electron mobility transistor (HEMT) structure, the GaN Systems GS66508B, 650 V commercial device, for in-depth investigation and analysis. The research focuses on three main aspects: (1) exploring the static characteristics of the device with an emphasis on static on-state resistance, (2) under dynamic measurements, analyzing the effect of different gate turn-on and drain turn-off voltages on dynamic on-state resistance, and (3) under dynamic measurements, analyzing the effect of different gate turn-off and drain turn-off voltages on dynamic on-state resistance.
The platform used for dynamic measurements in this study is the Double Pulse Test (DPT) method, which can be operated in either a resistive load or an inductive load mode. This research employs the resistive load mode to reduce oscillations caused by parasitic effects during switching and obtain more accurate measurement results. The switch is hard-switched to minimize the influence of thermal effects on resistance.
Regarding the static characteristics of the device, the standard gate voltage turn-on voltage is 6 V. However, it was observed that a gate voltage turn-on voltage of 7 V slightly improves the static on-state resistance compared to 6 V, while lower turn-on voltages result in deteriorated device performance. Further investigation into the gate turn-on voltage under dynamic measurements reveals a more pronounced difference. Providing a higher drain turn-off voltage shifts the device′s threshold voltage to the right, requiring a higher gate voltage to fully turn on the device.
On the other hand, for system stability and safety during switching, negative voltages are applied to the device when turning off. The impact of these negative gate voltages during device turn-off is also an important aspect of the discussion. It was found that different gate turn-off voltages have varying effects on dynamic on-state resistance. Generally, more negative gate turn-off voltages exacerbate the degradation of dynamic on-state resistance due to two main internal mechanisms. Firstly, the high bias between the drain and source during turn-off leads to high electric fields and impact ionization, generating electron-hole pairs. The holes, which could have played a role in detraping, are attracted to the negative gate voltage, leading to severe degradation of dynamic on-state resistance through a multiplication effect. Secondly, applying a negative gate bias during device turn-off causes holes in the p-GaN layer to be attracted to the gate voltage. When the device is turned on again, these holes cannot immediately return to their original positions, resulting in a rightward shift of the device′s threshold voltage and causing significant degradation of dynamic on-state resistance.關鍵字(中) ★ 動態電阻
★ 氮化鎵高電子遷移率電晶體關鍵字(英) ★ dynamic RON
★ GaN HEMT論文目次 摘要 I
Abstract II
致謝 I
目錄 I
圖目錄 III
表目錄 XI
1 第一章 緒論 1
1.1 前言 1
1.2加強型氮化鋁鎵/氮化鎵高電子遷移率電晶體 2
1.2 氮化鎵電晶體之動態特性文獻回顧 5
1.3 雙脈衝量測平台架構與原理 2
1.4 研究動機與目的 7
1.5 論文架構 7
2 第二章 蕭特基p型氮化鎵閘極電晶體在不同閘極開啟電壓雙脈衝動態量測下之特性分析 8
2.1 元件介紹與靜態特性量測分析 8
2.1.1 元件介紹 8
2.1.2 元件靜態特性量測環境和量測結果 9
2.2 雙脈衝動態量測環境與動態特性萃取方法 15
2.2.1 雙脈衝動態量測平台 15
2.2.2 雙脈衝動態量測平台之動態電阻萃取 20
2.2.3 雙脈衝動態量測平台之臨界電壓萃取 22
2.3 不同閘極開啟電壓之動態量測結果 24
2.3.1 不同閘極開啟電壓之動態電阻結果 24
2.3.2 不同閘極開啟電壓之臨界電壓結果 32
2.4 不同條件閘極開啟電壓之雙脈衝動態量測模擬 39
2.4.1 元件架構之模擬參數 39
2.4.2 不同閘極開啟電壓之模擬結果 41
2.5 物理機制探討與結論 44
3 第三章 蕭特基p型氮化鎵閘極電晶體不同閘極關閉電壓雙脈衝動態量測之特性分析 46
3.1 不同閘極關閉電壓之動態電阻量測結果 46
3.1.1 不同閘極關閉電壓之動態電阻結果 46
3.1.2 比較不同閘極關閉電壓下動態電阻的穩定性 74
3.2 不同閘極關閉電壓之動態臨界電壓量測結果 77
3.3 物理機制探討與結論 93
4 第四章 結論 95
參考文獻 97參考文獻 [1] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3materials, processing, and devices,” Applied Physics Reviews, vol. 5, no. 1, 2018.
[2] F. C. Luan Xing-He, Qin Hong-Bo, Niu Fan-Fan, Yang Dao-Guo, “The electronic properties of zinc-blende GaN wurtzite GaN and pnma-GaN crystals under pressure,” IEEE International Conference on Electronic Packaging Technology (ICEPT), 2017.
[3] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U. I. Chung, “p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, 2013.
[4] “GS66508B datasheet,” GaN Systems Inc., 2018.
[5] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” Electron Devices, IEEE Transactions on, vol. 54, pp. 3393-3399, 01/01, 2008.
[6] “IGT60R070D1 datasheet,” Infineon Inc., 2020.
[7] K. J. Chen, O. Haberlen, A. Lidow, C. l. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, “GaN-on-Si Power Technology: Devices and Applications,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, 2017.
[8] “TP65H050WS,” Transphorm Inc., 2018.
[9] R. Zhang, Q. Song, Q. Li, and Y. Zhang, “Overvoltage Robustness of p-Gate GaN HEMTs in High Frequency Switching up to Megahertz,” IEEE Transactions on Power Electronics, vol. 38, no. 5, pp. 6063-6072, 2023.
[10] “GS66508T datasheet,” GaN Systems Inc., 2018.
[11] H. Wang, J. Wei, R. Xie, C. Liu, G. Tang, and K. J. Chen, “Maximizing the Performance of 650-V p-GaN Gate HEMTs: Dynamic RON Characterization and Circuit Design Considerations,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5539-5549, 2017.
[12] “GS66504B datasheet,” GaN Systems Inc., 2018.
[13] Z. Jiang, M. Hua, X. Huang, L. Li, C. Wang, J. Chen, and K. J. Chen, “Negative Gate Bias Induced Dynamic ON-Resistance Degradation in Schottky-Type p-Gan Gate HEMTs,” IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 6018-6025, 2022.
[14] L. Sayadi, G. Iannaccone, S. Sicre, O. Haberlen, and G. Curatola, “Threshold Voltage Instability in p-GaN Gate AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2454-2460, 2018.
[15] A. N. Hiroki Ishibashi, Hirokatsu Umegami, Wilmar Martinez, Masayoshi Yamamoto, “An analysis of false turn-on mechanism on high-frequency power devices,” IEEE Energy Conversion Congress and Exposition, (ECCE), 2015.
[16] G. Zu, H. Wen, Y. Zhu, R. Zhong, Q. Bu, W. Liu, Y. Zhao, and M. Cui, “Review of Pulse Test Setup for the Switching Characterization of GaN Power Devices,” IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3003-3013, 2022.
[17] T. Yao, and R. Ayyanar, “A Multifunctional Double Pulse Tester for Cascode GaN Devices,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9023-9031, 2017.
[18] R. Gelagaev, P. Jacqmaer, and J. Driesen, “A Fast Voltage Clamp Circuit for the Accurate Measurement of the Dynamic ON-Resistance of Power Transistors,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 1241-1250, 2015.
[19] T. P. Bin Lu, Dilip Risbud, Sandeep Bahl, David I. Anderson “Extraction of Dynamic On-Resistance in GaN Transistors Under Soft and Hard-Switching Conditions,” IEEE Symposium on Compound Semiconductor Integrated Circuit, (CSICS), 2011.
[20] R. R. Han Peng, Robert Thomas, Michael J. Schutten, “Comprehensive Switching Behavior Characterization of High Speed Gallium Nitride E-HEMT with Ultra Low Loop Inductance ” IEEE 5th Work shop Wide Bandgap Power Devices Appl.(WiPDA), 2017.
[21] “GaN E-HEMT Daughter Board and GS665MB-EVB Evaluation Platform,” GaN Systems Inc., 2020.
[22] “PD1500A double-pulse test,” Keysight Technologies, 2020.
[23] “PD1500A S5b GaNboard SetUp Guide,” Keysight Technologies, 2020.
[24] R. Zhang, J. P. Kozak, M. Xiao, J. Liu, and Y. Zhang, “Surge-Energy and Overvoltage Ruggedness of P-Gate GaN HEMTs,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13409-13419, 2020.
[25] “ATLAS User’s Manual DEVICE SIMULATION SOFTWARE,” SILVACO Inc., 2016.
[26] J. Böcker, H. Just, O. Hilt, N. Badawi, J. Würfl, and Sibylle, “Experimental Analysis and Modeling of GaN Normally-off HFETs with Trapping Effects,” European Conference on Power Electronics and Applications, pp. pp. 1-10., 2015.
[27] M. Meneghini, C. de Santi, T. Ueda, T. Tanaka, D. Ueda, E. Zanoni, and G. Meneghesso, “Time- and Field-Dependent Trapping in GaN-Based Enhancement-Mode Transistors With p-Gate,” IEEE Electron Device Letters, vol. 33, no. 3, pp. 375-377, 2012.指導教授 辛裕明(Yue-ming Hsin) 審核日期 2023-8-16 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare