參考文獻 |
[1] S. Deutsch, B. Keller, V. Chickermane, S. Mukherjee, N. Sood, S. K. Goel, J.-J. Chen, A. Mehta, F. Lee, and E. J. Marinissen, “DfT architecture and ATPG for interconnect tests of JEDEC wide-I/O memory-on-logic die stacks,” in Proc. Int’l Test Conf. (ITC), Nov. 2012, pp. 1–10.
[2] T.-Y. Oh, K.-I. Park, Y.-S. Yang, Y.-S. Sohn, S.-H. Kim, and S.-J. Bae, “Stacked semiconductor memory device, memory system including the same, and method of repairing defects of through silicon vias,” U.S Patent No. 8654593 B2, Apr. 2011.
[3] Y. Xie, G. H. Loh, B. Black, and K. Bersnstein, “Design space exploration for 3D architectures,” ACM Journal on Emerging Technologies in Computing Systems, vol. 2, no. 2, pp. 65–103, Apr. 2006.
[4] J.-Q. Lu, “3-D hyperintegration and packaging technologies for micro-nano systems,” Proceedings of the IEEE, vol. 97, no. 1, pp. 18–30, Jan. 2009.
[5] M. Motoyoshi, “Through-silicon via (TSV),” Proceedings of the IEEE, vol. 97, no. 1, pp. 43–48, Jan. 2009.
[6] U. Kang and et al., “8Gb 3-D DDR3 DRAM using through-silicon-via technology,” IEEE Jour. of Solid-State Circuits, vol. 45, no. 1, pp. 111–119, Jan. 2010.
[7] T. Sekiguchi, K. Ono, A. Kotabe, and Y. Yanagawa, “1-Tbyte/s 1-Gbit DRAM architec- ture using 3-D interconnect for high-throughput computing,” IEEE Jour. of Solid-State Circuits, vol. 46, no. 4, pp. 828–837, Apr. 2011.
[8] J.-S. Kim and et al., “A 1.2V 12.8 GB/s 2Gb mobile wide-I/O DRAM with 4x128 I/Os using TSV based stacking,” IEEE Jour. of Solid-State Circuits, vol. 47, no. 1, pp. 107–116, Jan. 2012.
[9] C.Weis, I. Loi, L. Benini, and N.Wehn, “Exploration and optimization of 3-D integrated DRAM subsystems,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 597–610, April 2013.
[10] JEDEC, “JEDEC wide I/O single data rate,” http://www.jedec.org/, Dec. 2011.
[11] ——, “DDR4 SDRAM,” http://www.jedec.org/, Sep. 2012.
[12] ——, “JEDEC high bandwidth memory (HBM) DRAM,” http://www.jedec.org/, Oct. 2013.
[13] B.Wang and Q. Xu, “Test/repair area overhead reduction for small embedded SRAMs,” in IEEE Asian Test Symp. (ATS), Nov. 2006, pp. 37–44.
[14] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “A serial interfacing technique for built-in and external testing of embedded memories,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), San Diego, May 1989, pp. 22.2/1–22.2/5.
[15] W.-B. Jone, D.-C. Huang, S.-C. Wu, and K.-J. Lee, “An efficient BIST method for small buffers,” in Proc. IEEE VLSI Test Symp. (VTS), 1999, pp. 246–251.
[16] V. Arora, W.-B. Jone, D.-C. Huang, and S. R. Das, “A parallel built-in self-diagnostic method for nontraditional faults of embedded memory arrays,” IEEE Trans. on Instru- mentation and Measurement, vol. 53, no. 4, pp. 915–932, Aug. 2004.
[17] L.Wu, C.Weaver, and T. Austin, “CryptoManiac: A fast flexible architecture for secure communication,” in Proc. 28th Ann. Int’l Symp. on Computer Architecture, 2001, pp. 110–119.
[18] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Au- tomatic generation of memory built-in self-test cores for system-on-chip,” in IEEE Asian Test Symp. (ATS), Nov. 2001, pp. 91–96.
[19] Y.-J. Huang and J.-F. Li, “A low-cost pipelined BIST scheme for homogeneous rams in multicore chips,” in IEEE Asian Test Symp. (ATS), Nov. 2008, pp. 357–362.
[20] M. Miyazaki, T. Yoneda, and H. Fujiwara, “A memory grouping method for sharing memory BIST logic,” in Proc. Asia and South Pacific Design Automation Conf. (ASP- DAC), Jan. 2006, pp. 671–676.
[21] L. Martirosyan, G. Harutyunyan, S. Shoukourian, and Y. Zorian, “A power based memory BIST grouping methodology,” in IEEE East-West Design Test Symposium (EWDTS), Sep. 2015, pp. 1–4.
[22] X. Du, N. Mukherjee, C. Hill, W.-T. Cheng, and S. Reddy, “A field programmable memory BIST architecture supporting algorithms with multiple nested loops,” in Proc. IEEE Asian Test Symp. (ATS), Nov. 2006, pp. 287–292.
[23] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST core for embedded DRAM,” IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59–70, Jan.-Mar. 1999.
[24] P. Jakobsen, J. Dreibelbis, G. Pomichter, D. Anand, J. Barth, M. Nelms, J. Leach, and G. Belansek, “Embedded DRAM built in self test and methodology for test insertion,” in Proc. Int’l Test Conf. (ITC), Nov. 2001, pp. 975–984.
[25] M. Kume, K. Uehara, M. Itakura, and H. Sawamoto, “Programmable at-speed array and functional BIST for embedded DRAM LSI,” in Proc. Int’l Test Conf. (ITC), Oct. 2004, pp. 988–996.
[26] J. E. Barth, D. Anand, S. Burns, J. H. Dreibelbis, J. A. Fifield, K. Gorman, M. Nelms, E. Nelson, A. Paparelli, G. Pomichter, D. E. Pontius, and S. Sliva, “A 500-MHz multi- banked compilable DRAM macro with direct write and programmable pipelining,” IEEE Jour. of Solid-State Circuits, vol. 40, no. 1, pp. 213–222, Jan. 2005.
[27] C.-F. Lin, J.-C. Ou, M.-H. Wang, Y.-S. Ou, and M.-H. Ku, “Single-instruction based programmable memory BIST for testing embedded DRAM,” in IEEE Int’l Symp. on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, April 2009, pp. 291–294.
[28] K. Gorman, M. Roberge, A. Paparelli, G. Pomichter, S. Sliva, and W. Corbin, “Ad- vancements in at-speed array BIST: multiple improvements,” in Proc. Int’l Test Conf. (ITC), Oct. 2010, Paper 3.1, pp. 1–10.
[29] P. Bernardi, M. Grosso, M. S. Reorda, and Y. Zhang, “A programmable BIST for DRAM testing and diagnosis,” in Proc. Int’l Test Conf. (ITC), Oct. 2010, Paper 15.3, pp. 1–10.
[30] S. Boutobza, M. Nicolaidis, K. M. Lamara, and A. Costa, “Programmable memory BIST,” in Proc. Int’l Test Conf. (ITC), Austin, Nov. 2005, Paper 45.2, pp. 1–10.
[31] C.-C. Yang, J.-F. Li, Y.-C. Yu, K.-T. Wu, C.-Y. Lo, C.-H. Chen, J.-S. Lai, D.-M. Kwai, and Y.-F. Chou, “A hybrid built-in self-test scheme for DRAMs,” in IEEE Int. Symp. on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, Apr. 2015, pp. 1–4.
[32] H. Hashimoto, T. Fukushima, K. Lee, M. Koyanagi, and T. Tanaka, “Highly efficient TSV repair technology for resilient 3-D stacked multicore processor system,” in IEEE Int’l 3D Systems Integration Conference (3DIC), San Francisco, Oct. 2013, pp. 1–5.
[33] A.-C. Hsieh and T.-T. Hwang, “TSV redundancy: architecture and design issues in 3-D IC,” IEEE Trans. on VLSI Systems, vol. 20, no. 4, pp. 711–722, Apr. 2012.
[34] M. Laisne, K. Arabi, and T. Petrov, “Systems and methods utilizing redundancy in semiconductor chip interconnects,” US Patent No. 20100060310 A1, Mar. 2010.
[35] G. V. der Plas and et al., “Design issues and considerations for low-cost 3-D TSV IC technology,” IEEE Jour. of Solid-State Circuits, vol. 46, no. 1, pp. 293–307, Jan 2011.
[36] M. Nicolaidis, V. Pasca, and L. Anghel, “Through-silicon-via built-in self-repair for aggressive 3D integration,” in On-Line Testing Symposium (IOLTS), 2012 IEEE 18th International, 2012, pp. 91–96.
[37] Y.-H. Lin, S.-Y. Huang, K.-H. Tsai, W.-T. Cheng, S. Sunter, Y.-F. Chou, and D.-M. Kwai, “Small delay testing for TSVs in 3D ICs,” in Proc. IEEE/ACM Design Automa- tion Conf. (DAC), San Francisco, June 2010, pp. 1031–1036.
[38] C.-C. Chi, C.-W. Wu, M.-J. Wang, and H.-C. Lin, “3D-IC interconnect test, diagnosis, and repair,” in Proc. IEEE VLSI Test Symp. (VTS), 2013, pp. 118–123.
[39] C.-W. Chou, Y.-J. Huang, and J.-F. Li, “A built-in self-repair scheme for 3D RAMs with interdie redundancy,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 572–583, April 2013.
[40] L. Jiang, F. Ye, Q. Xu, K. Chakrabarty, and B. Eklow, “On effective and efficient in- field TSV repair for stacked 3D ICs,” in Proc. IEEE/ACM Design Automation Conf. (DAC), Austin, June 2013, pp. 1–6.
[41] ——, “On effective and efficient in-field TSV repair for stacked 3D ICs,” in Proc. IEEE/ACM Design Automation Conf. (DAC), Austin, June 2013, pp. 1–6.
[42] Y. Zhao, S. Khursheed, and B. Al-Hashimi, “Cost-effective tsv grouping for yield im- provement of 3D-ICs,” in IEEE Asian Test Symp. (ATS), Nov 2011, pp. 201–206.
[43] S. Adham and E. J. Marinissen, “IEEE P1838 web site,” http://grouper.ieee.org/groups /3Dtest/.
[44] K.-T. Wu, J.-F. Li, C.-Y. Lo, J.-S. Lai, D.-M. Kwai, and Y.-F. Chou, “A channel- shareable built-in self-test scheme for multi-channel DRAMs,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Jan. 2018, pp. 245–250.
[45] K.-T. Wu, J.-F. Li, Y.-C. Yu, C.-S. Hou, C.-C. Yang, D.-M. Kwai, Y.-F. Chou, and C.- Y. Lo, “Intra-channel reconfigurable interface for TSV and micro bump fault tolerance in 3-D RAMs,” in IEEE Asian Test Symp. (ATS), Nov. 2014, pp. 143–148.
[46] H. M. C. Consortium, “Hybrid memory cube (HMC),” http://www.hybridmemorycube. org/, Apr. 2013.
[47] H.-W. Kim and S. Lee, “Design and implementation of a private and public key crypto processor and its application to a security system,” IEEE Trans. on Consumer Elec- tronics, vol. 50, no. 1, pp. 214–224, Feb. 2004.
[48] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and optimal configuration of a real-time multi-channel memory controller,” in Proc. Conf. Design, Automation, and Test in Europe (DATE), Grenoble, 2013, pp. 1307–1312.
[49] E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini, “Logic-base interconnect design for near memory computing in the smart memory cube,” IEEE Trans. on VLSI Systems, vol. 25, no. 1, pp. 210–223, Jan. 2017.
[50] M. A. Breuer and A. D. Friedman, Diagnosis & Reliable Design of Digital Systems. Computer Science Press, 1976.
[51] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Chichester, England: John Wiley & Sons, 1991.
[52] K. P. Parker, “3D-IC defect investigation,” IEEE P1838 Defect Tiger Team, Tech. Rep., July 2012.
[53] S. Kannan, B. Kim, and B. Ahn, “Fault modeling and multi-tone dither scheme for testing 3D TSV defects,” Jour. of Electronic Testing: Theory and Applications, vol. 28, no. 1, pp. 39–51, Feb. 2012.
[54] Y. Chen, D. Niu, Y. Xie, and K. Chakrabarty, “Cost-effective integration of three- dimensional (3D) ICs emphasizing testing cost analysis,” in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), San Jose, Nov. 2010, pp. 471–476.
[55] B. Noia and K. Chakrabarty, “Identification of defective TSVs in pre-bond testing of 3D ICs,” Proc. IEEE Asian Test Symp. (ATS), pp. 187–194, Aug. 2011.
[56] F. Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits: Character- ization, test, and optimal spare allocation,” in Proc. IEEE/ACM Design Automation Conf. (DAC), June. 2012, pp. 1024–1030.
[57] I. Loi, F. Angiolini, S. Fujita, S. Mitra, and L. Benini, “Characterization and imple- mentation of fault-tolerant vertical links for 3-D networks-on-chip,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 124–134, Jan. 2011. |