博碩士論文 110521072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:18.220.188.4
姓名 劉信良(Xin-Liang Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具柔切三相分源逆變器與直交流電壓控制策略研製
(A ZVS Three-phase Split-Source Inverter and DC-AC Voltage Control Strategy)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
★ 考慮電網失真不平衡下三相反流器直接功 率控制之研製★ 三相T-type整流器於不平衡電網下主動輸出電壓不平衡控制及直流端電壓漣波抑制
★ 三相電網形成反流器之阻抗估算策略與新型諧波電壓抑制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文著重於研發三相分源逆變器的電路優化,加入直交流側電壓控制、減少開關切換狀態策略與柔性切換等功能。使用傳統雙迴路控制應用於此電路會導致直流側電壓和交流側電壓耦合之問題,本論文提出新型直交流側電壓控制,可以使直流側電壓和交流側電壓分開控制,不再相互受到影響,並且可使直流側應用更加靈活。而此電路因為升壓電感充放電需平衡的關係,無法使用傳統不連續脈波寬度調變(DPWM),必須使用修改型空間向量調變(Modified SVPWM)做控制,增加其電感充放電之穩定度。所以本論文提出一種減少開關切換狀態策略,觀察開關無用狀態,減少其開關切換次數,彌補無法使用不連續脈波寬度調變所造成的切換損失。此外本論文使用後緣鋸齒載波,可減少輸入端二極體之換向次數,減少換向損耗。最後因為此電路雙埠輸出關係,開關電流應力遠大於傳統三相六開關電路,加入柔性切換功能,使其開關切換損耗降低,以提升整體電路之效能,使其轉換效率提升。
摘要(英) This paper focuses on the circuit optimization of a three-phase split-source inverter, incorporating features such as DC-AC side voltage control, reduced switching state strategies, and soft switching. Using conventional dual-loop control for this circuit would lead to the problem of coupling between the DC-side voltage and AC-side voltage. This paper proposes a novel DC-AC side voltage control, which allows separate control of the DC-side voltage and AC-side voltage, eliminating their mutual influence and making the DC-side application more flexible. Due to the need for balancing the charging and discharging of the boosting inductor in this circuit, traditional discontinuous pulse-width modulation (DPWM) cannot be used. Instead, a modified space vector pulse-width modulation (Modified SVPWM) is employed to enhance the stability of inductor charging and discharging. Therefore, this paper presents a strategy to reduce switching states, identifying unused switching states and reducing the number of switch transitions to compensate for the switching losses incurred by the inability to use DPWM. Furthermore, this paper employs trailing-edge sawtooth carrier waveforms to reduce the number of diode commutations at the input side, thereby minimizing commutation losses. Finally, due to the dual-port output nature of this circuit, the stress on switch currents is much higher compared to traditional three-phase six-switch circuits. The addition of soft switching functionality reduces switch transition losses, enhancing the overall circuit efficiency and improving conversion efficiency.
關鍵字(中) ★ 分源逆變器
★ 直交流電壓控制策略
★ 減少開關切換
★ 零電壓切換
關鍵字(英) ★ Split-Source Inverter
★ DC and AC voltage control strategy
★ reducing switching
★ zero voltage switching
論文目次 摘要.................I
Abstract.............II
誌謝.................III
目錄.................IV
圖目錄...............VI
表目錄...............XVII
第一章 緒論..........1
1-1研究背景與動機....1
1-2文獻回顧..........2
1-3本論文之貢獻......4
1-4論文內容概述......5
第二章 三相分源逆變器介紹...6
2-1前言...................6
2-2交流側雙迴路控制........10
2-3直流側控制介紹..........13
2-4減少開關切換狀態原理....18
2-5柔切策略介紹............23
第三章 所提直交流側電壓控制策略....30
3-1前言.....30
3-2所提直交流側電壓控制器...31
3-2-1孤島運作控制........31
3-2-2併網運作控制........34
3-3 減少開關狀態策略........38
第四章 所提之柔性切換電路架構與切換策略.....44
4-1 所提柔性切換策略與電路動作原理分析......44
4-2元件設計分析...........52
第五章 系統架構與模擬分析..60
5-1模擬軟體介紹...........60
5-2直交流側電壓控制模擬....62
5-3柔切模擬...............76
5-4減少開關切換狀態模擬....88
5-5損耗分析...............96
第六章 硬體電路與實作結果..102
6-1 硬體與微控制器介紹...102
6-1-1硬體設備與電路.....102
6-1-2微控制器介紹.......109
6-2直交流側電壓控制實作....113
6-3柔切實作.............127
6-4減少開關切換狀態實作....136
第七章 結論與未來展望......145
7-1 論文內容總結..........145
7-2 未來展望..............146
參考文獻..................147
參考文獻 [1]F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, Mar. 2003.
[2]Y. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. Town, “Impedancesource networks for electric power conversion part I: A topological review,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 699–716, Feb. 2015.
[3]A. Abdelhakim, P. Mattavelli and G. Spiazzi, "Three-Phase Split-Source Inverter (SSI): Analysis and Modulation," IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7451-7461, Nov. 2016, doi: 10.1109/TPEL.2015.2513204.
[4]M. AbdulSalam, S. M. Dabour, and E. M. Rashad, "Cascaded Multilevel Split-Source Inverters: Analysis and Modulation," 2019 21st International Middle East Power Systems Conference(MEPCON),2019,pp.1204-1209,doi: 10.1109/MEPCON47431.2019.9008050.
[5]A. Abdelhakim, P. Mattavelli, and G. Spiazzi, “Three-level operation of the split-source inverter using the flying capacitors topology,” in Proc. 8th IEEE Int. Power Electron. Motion Control Conf., May 2016, pp. 223–228.
[6]A. Abdelhakim and P. Mattavelli, "Analysis of the three-level diode-clamped split-source inverter," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 3259- 3264, doi: 10.1109/IECON.2016.7793581.
[7]A. Abdelhakim, P. Mattavelli, V. Boscaino and G. Lullo, "Decoupled Control Scheme of Grid-Connected Split-Source Inverters," IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6202-6211, Aug. 2017, doi: 10.1109/TIE.2017.2677343.
[8]M. Chen, C. Yin and P. C. Loh, "Magnetically Coupled High-Voltage Boost Split Y-Source Inverter Without Leakage-Induced Voltage Spikes," in IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5444-5455, July 2020, doi: 10.1109/TIE.2019.2931227.
[9]X. Fang, W. Zhang, X. Kan, and Q. Wang, "Three-Phase Split Delta Source Inverter: Operating Principles and Modulation," 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), 2020, pp. 775-780, doi: 10.1109/SCEMS48876.2020.9352323.
[10]A. Abdelhakim, P. Mattavelli, and G. Spiazzi, “Three-phase three-level flying capacitors split-source inverters: Analysis and modulation,” IEEE Trans. Ind. Electron, to be published, doi: 10.1109/TIE.2016.2645501.
[11]Jong-Woo Choi and S. -K. Sul, "Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling," IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 179-185, Jan. 1998.
[12]R. Kadri, J. Gaubert and G. Champenois, "An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage-Oriented Control," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 66-75, Jan. 2011.
[13]T. Zhao, Q. Zong, T. Zhang and Y. Xu, "Study of photovoltaic three-phase grid-connected inverter based on the grid voltage-oriented control," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp. 2055-2060.
[14]J. Guzinski and H. Abu-Rub, "Sensorless induction motor drive with voltage inverter and sine-wave filter," 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013, pp. 1-8.
[15]J. Salmon, L. Wang, N. Noor, and A. W. Krieger, “A carrier-based unipolar PWM current controller that minimizes the PWM-cycle average current error using internal feedback of the PWM signals,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1708–1718, Sep. 2007.
[16]Z. Guo and F. Kurokawa, “A novel PWM modulation and hybrid control scheme for grid-connected unipolar inverters,” in Proc. Appl. Power Electron. Conf. Expo., 2011, pp. 1634–1641.
[17]N. Mohan, T. Undeland, and W. Robbins, Power Electronics—Converters, Applications, and Design. New Delhi, India: Wiley, 2003.
[18]R. Li and D. Xu, "A Zero-Voltage Switching Three-Phase Inverter," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1200-1210, March 2014.
[19]R. Li, Z. Ma and D. Xu, "A ZVS Grid-Connected Three-Phase Inverter," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3595-3604, Aug. 2012.
[20]Hengchun Mao, C. Y. Lee, D. Boroyevich and S. Hiti, "Review of high-performance three-phase power-factor correction circuits," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 437-446, Aug. 1997.
[21]Y. P. Li, F. C. Lee and D. Boroyevich, "A simplified three-phase zero-current-transition inverter with three auxiliary switches," IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 802-813, May 2003.
[22]K. Shi, J. Deng and D. Xu, "A General Pulse Width Modulation Method for Zero-Voltage-Switching Active-clamping Three-phase Power Converters: Edge Aligned Pulse Width Modulation (EA-PWM)," IEEE Open Journal of Power Electronics, vol. 1, pp. 250-259, 2020.
[23]Y.-H. Liao, J.-Y. Chen, and Y. Zhou, “A Novel Carrier Scheme Combined with DPWM Technique in a ZVS Grid-Connected Three-Phase Inverter,” Electronics, vol. 11, no. 4, p. 656, Feb. 2022.
[24]J. de Azevedo Borges and F. B. Grigoletto, "Finite set model predictive control of grid connected split-source inverters," 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 2017, pp. 1-6, doi: 10.1109/COBEP.2017.8257297.
[25]M. A. Ismeil, "High Dynamic Performance for Split-Source Inverter based on Finite Control Set Model Predictive Control," 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2019, pp. 8-13, doi: 10.1109/MEPCON47431.2019.9007972.
[26]W. M. Abou-Hussein, S. M. Dabour, M. S. Hamad and E. M. Rashad, "Model Predictive Control for Three-Phase Split-Source Inverter-Based Virtual Synchronous Generator," 2021 22nd International Middle East Power Systems Conference (MEPCON), Assiut, Egypt, 2021, pp. 648-653, doi: 10.1109/MEPCON50283.2021.9686236.
[27]Y. -H. Liao, "A Novel Reduced Switching Loss Bidirectional AC/DC Converter PWM Strategy With Feedforward Control for Grid-Tied Microgrid Systems," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1500-1513, March 2014, doi: 10.1109/TPEL.2013.2260872.
[28]A. Abdelhakim, P. Mattavelli, P. Davari and F. Blaabjerg, "Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC–AC Configuration," IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 363-373, Jan. 2018, doi: 10.1109/TIE.2017.2714122.
[29]C. Lee, C. Chu and P. Cheng, "A New Droop Control Method for the Autonomous Operation of Distributed Energy Resource Interface Converters," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1980-1993, April 2013.
[30]Y. -H. Liao, Y. Zhou and X. S. Huang, "A Grid Synchronization Strategy for Micro-Grid System," 2022 IET International Conference on Engineering Technologies and Applications (IET-ICETA), Changhua, Taiwan, 2022, pp. 1-2, doi: 10.1109/IET-ICETA56553.2022.9971600.
[31]周郢,具柔切三相六開關反流器之併網及新型垂降控制策略,碩士論文,國立中央大學電機工程學系,2022。
[32]C. Lee, R. Jiang and P. Cheng, "A Grid Synchronization Method for Droop-Controlled Distributed Energy Resource Converters," IEEE Transactions on Industry Applications, vol. 49, no. 2, pp. 954-962, March-April 2013.
[33]A. Bakeer, S. M. Dabour, I. A. Gowaid, A. A. Aboushady, M. A. Elgenedy and M. E. Farrag, "Enhanced Finite Control Set-Model Predictive Control for Three-Phase Split-Source Inverters," 2022 57th International Universities Power Engineering Conference (UPEC), Istanbul, Turkey, 2022, pp. 1-6, doi: 10.1109/UPEC55022.2022.9917867.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2023-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明