參考文獻 |
[1] 王建敏:紡織業製程數位化—品質與交期的改善策略。2020年3月18日,取自https://reurl.cc/x62Zn4
[2] 中華民國紡織業拓展會:2022年台灣紡織工業概況。2023年7月12日,取自https://www.textiles.org.tw/ttf/main/content/ContentDesc.aspx?menu_id=95
[3] Lewis, Roger J. "An introduction to classification and regression tree (CART) analysis." Annual meeting of the society for academic emergency medicine in San Francisco, California. Vol. 14. San Francisco, CA, USA: Department of Emergency Medicine Harbor-UCLA Medical Center Torrance, 2000.
[4] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
[5] Lee, D. H., Kim, S. H., Kim, E. S., Kim, K. J., & He, Z. "MR-CART: Multiresponse optimization using a classification and regression tree method." Quality Engineering 33.3 (2021): 457-473.
[6] Wahyuni, I., Chang, C. C., Yang, H. S., Wang, W. J., & Liang, D. "Multistage Parameter Optimization for Rule Generation for Multistage Manufacturing Processes." IEEE Transactions on Industrial Informatics (2023).
[7] Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021.
[8] Lee, Myeong-Soo, and Kwang-Jae Kim. "MR-PRIM: patient rule induction method for multiresponse optimization." Quality Engineering 20.2 (2008): 232-242.
[9] NASSIH, Rym, and Abdelaziz BERRADO. "Towards a patient rule induction method based classifier." 2019 1st International Conference on Smart Systems and Data Science (ICSSD) (pp. 1-5). Rabat, Morocco. IEEE, 2019.
[10] 倢愷:Scikit Learn 0.24 更新 SequentialFeatureSelector 介紹。2021年2月10日,取自https://reurl.cc/y6G53D
[11] Raschka, Sebastian. "MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack." Journal of open source software 3.24 (2018): 638.
[12] Lee, Dong-Hee, So-Hee Kim, and Kwang-Jae Kim. "Multistage MR-CART: Multiresponse optimization in a multistage process using a classification and regression tree method." Computers & Industrial Engineering 159 (2021): 107513.
[13] Wang, Bo, and Tao Chen. "Gaussian process regression with multiple response variables." Chemometrics and Intelligent Laboratory Systems 142 (2015): 159-165.
[14] Mukhopadhyay, Arunangshu, Vinay Kumar Midha, and Nemai Chandra Ray. "Multi-objective optimization of parametric combination of injected slub yarn for producing knitted and woven fabrics with least abrasive damage." Research Journal of Textile and Apparel 21.2 (2017): 111-133.
[15] Kwakkel, Jan H., and Marc Jaxa-Rozen. "Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes." Environmental Modelling & Software 79 (2016): 311-321.
[16] Liang, Hua, and Hulin Wu. "Parameter estimation for differential equation models using a framework of measurement error in regression models." Journal of the American Statistical Association 103.484 (2008): 1570-1583.
[17] Arulsudar, N., N. Subramanian, and R. S. R. Murthy. "Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes." J Pharm Pharm Sci 8.2 (2005): 243-258.
[18] Dao-de, Sun. "Selection of the linear regression model according to the parameter estimation." Wuhan University Journal of Natural Sciences 5.4 (2000): 400-405.
[19] YANG,HUA-SHENG, “Adopting regression tree for rules mining to effectively reduce various fabric defects simultaneously”, National Central University, Master thesis, 2022.
[20] Chakraborty, Samit, Marguerite Moore, and Lisa Parrillo-Chapman. "Automatic Printed Fabric Defect Detection Based on Image Classification Using Modified VGG Network." International Conference on Applied Human Factors and Ergonomics (pp. 384-393). San Diego, CA, USA. Cham: Springer International Publishing, 2021.
[21] Arora, Parul, and Madasu Hanmandlu. "Detection of defects in fabrics using information set features in comparison with deep learning approaches." The Journal of The Textile Institute 113.2 (2022): 266-272.
[22] Kim, Seong-Jun, and Kang Bae Lee. "Constructing decision trees with multiple response variables." International Journal of Management and Decision Making 4.4 (2003): 337-353.
[23] Tsymbal, A., Cunningham, P., Pechenizkiy, M., & Puuronen, S. "Search strategies for ensemble feature selection in medical diagnostics." 16th IEEE Symposium Computer-Based Medical Systems, 2003. Proceedings.. IEEE, 2003.
[24] Uyanık, Gülden Kaya, and Neşe Güler. "A study on multiple linear regression analysis." Procedia-Social and Behavioral Sciences 106 (2013): 234-240.
[25] Nasrin, T., Pourali, M., Pourkamali-Anaraki, F., & Peterson, A. M. "Active learning for prediction of tensile properties for material extrusion additive manufacturing." Scientific Reports 13.1 (2023): 11460.
[26] Kim, Sungshin, and George J. Vachtsevanos. "An intelligent approach to integration and control of textile processes." Information Sciences 123.3-4 (2000): 181-199.
[27] Dema, M., Turner, C., Sari-Sarraf, H., & Hequet, E. "Machine vision system for characterizing horizontal wicking and drying using an infrared camera." IEEE Transactions on Industrial Informatics 12.2 (2016): 493-502.
[28] Bouatmane, S., Roula, M. A., Bouridane, A., & Al-Maadeed, S. "Round-Robin sequential forward selection algorithm for prostate cancer classification and diagnosis using multispectral imagery." Machine Vision and Applications 22 (2011): 865-878.
[29] Naheed, N., Shaheen, M., Khan, S. A., Alawairdhi, M., & Khan, M. A. "Importance of Features Selection, Attributes Selection, Challenges and Future Directions for Medical Imaging Data: A Review." CMES-Computer Modeling in Engineering & Sciences 125.1 (2020).
[30] Jović, Alan, Karla Brkić, and Nikola Bogunović. "A review of feature selection methods with applications." 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO). Ieee, 2015.
[31] Dunne, Kevin, Padraig Cunningham, and Francisco Azuaje. "Solutions to instability problems with sequential wrapper-based approaches to feature selection." Journal of Machine Learning Research 1 (2002): 22.
[32] Almetwally, Alsaid Ahemd. "Multi-objective optimization of woven fabric parameters using Taguchi–Grey relational analysis." Journal of Natural fibers 17.10 (2020): 1468-1478.
[33] Vachtsevanos, G. J., Dorrity, J. L., Kumar, A., & Kim, S. "Advanced application of statistical and fuzzy control to textile processes." IEEE transactions on industry applications 30.3 (1994): 510-516.
[34] Hussain, Tanveer, Abdul Jabbar, and Shakeel Ahmed. "Comparison of regression and adaptive neuro-fuzzy models for predicting the compressed air consumption in air-jet weaving." Fibers and Polymers 15 (2014): 390-395.
[35] Bose, Indranil, and Radha K. Mahapatra. "Business data mining—a machine learning perspective." Information & management 39.3 (2001): 211-225.
[36] Langley, Pat, and Herbert A. Simon. "Applications of machine learning and rule induction." Communications of the ACM 38.11 (1995): 54-64.
[37] Stark, K. D., and Dirk U. Pfeiffer. "The application of non-parametric techniques to solve classification problems in complex data sets in veterinary epidemiology-an example." Intelligent Data Analysis 3.1 (1999): 23-35.
[38] Long, X., Fang, B., Zhang, Y., Luo, G., & Sun, F. "Fabric defect detection using tactile information." 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 11169-11174). Xi′an, China. IEEE, 2021. |