博碩士論文 109521183 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.129.194.182
姓名 卓志偉(Chih-Wei Cho)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵高電子遷移率電晶體暫態電流特性 與電流散射之研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-27以後開放)
摘要(中) 氮化鎵高電子遷移率電晶體(GaN HEMT)其材料具有高電子遷移率、高崩潰電場、高飽和速度等特性,特別適用於 5G 基地台、低軌道衛星等這些需要高功率輸出的應用。然而,氮化鎵於磊晶過程產生的缺陷會在高電流、高電壓操作下引起可靠度相關的問題。電流散射效應會造成汲極輸出電流降低,這會嚴重影響元件模型的準確度並且限制元件的輸出功率。本文以商用穩懋氮化鎵元件進行暫態電流量測分析,元件分別施加不同的應力關閉電壓到導通電壓觀察電流暫態的變化,導通電壓又可分成線性區和飽和區做比較。當元件從關閉狀態切換至開啟狀態線性區時,觀察到與溫度相關的熱激發載子逃脫效應,陷阱活化能大約為 EA= 0.5 eV。相反的,當元件從關閉狀態切換至開啟狀態飽和區時,較不易觀察到與溫度相關的載子逃脫現象。推測可能原因是汲極和源極間存在較高的電場,使得更容易導致電場輔助穿隧效應現象發生。
此外,本文也提出藉由脈衝小訊號 S 參數量測方式,元件經由應力關閉電壓後隨即以短脈衝開啟電壓來測量 S 參數,觀察元件發生電流散射時小訊號參數的變化,利用等效電路建立模型並萃取出小訊號參數。可以觀察到在元件關閉時,高的汲極偏壓會導致汲極與源極間的電阻(Rds)、閘極與汲極間電容(Cgd)、汲極與源極間的電容(Cds)等元件本質參數有明顯的變化。元件受到關閉狀態高電場作用之下,通道電子可能被 AlGaN 能障層、緩衝層內的缺陷捕獲造成。
摘要(英) GaN Nitride material has many superior properties, such as high electron mobility, high critical electric field, and high saturation velocity. It is especially suitable for 5G base stations and low-orbit satellites requiring high-output power. However, defects generated in the epitaxial crystallization process of gallium nitride could cause reliability issues under high-current and high-voltage operations. The current dispersion effect will cause the drain output current to decrease, which will seriously affect the accuracy of the device modeling and limit the device’s output power. In this study, the commercial WIN gallium nitride device is adopted to investigate the change of current transient. Applying different off-state stress and on-state voltage to observe the changes in current transient. The on-state voltage can be divided into linear and saturation regions to compare. When the device switches from the off-state to the on-state linear region, the temperature dependence of the de-trapping is observed, and it is thermally activated with trap activation energy around EA=0.5 eV. On the contrary, temperature-dependent detrapping is hard to observe when the device switches from the off-state to the on-state saturation region. It is speculated that the possible reason is that there is a higher electric field between the drain and the source, which makes it easier for the electric field-assisted tunneling effect to occur.
In addition, this thesis also proposes a pulsed small signal S-parameter measurement method. After the off-state stress voltage is applied to the device, the S-parameter is measured with a short pulse turn-on voltage. The changes in the small signal parameters are observed when current dispersion occurs. The equivalent circuit model is established and extracts small signal parameters. It can be observed that when the device is turned off with a high drain bias, the intrinsic parameters such as the resistance between the drain and the source (Rds), the capacitance between the gate and the drain (Cgd), and the capacitance between the drain and the source (Cds) all change significantly. The electrons in the channel may be trapped by defects in the AlGaN barrier layer and buffer layer under a high electric field.
關鍵字(中) ★ 氮化鎵
★ 暫態電流
★ 電流散射
關鍵字(英)
論文目次 摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XI
表目錄 XVII
1 第一章 緒論 1
1.1 前言 1
1.2 氮化鋁鎵/氮化鎵異質結構 3
1.3 氮化鎵高頻元件發展現況 6
1.4 氮化鎵元件暫態電流相關研究回顧 8
1.5 氮化鎵元件動態S參數相關研究回顧 13
1.6 研究動機與論文架構 24
2 第二章 氮化鎵HEMT之暫態電流量測及特性分析 25
2.1 前言 25
2.2 元件布局與直流特性 25
2.2.1 元件布局 25
2.2.2 元件直流特性 26
2.3 電流暫態量測與缺陷特性分析 27
2.3.1 關閉狀態切換至導通狀態線性區之電流暫態特性 27
2.3.2 關閉狀態切換至導通狀態飽和區之電流暫態特性 36
2.4 Silvaco模擬 43
2.5 本章結論 46
3 第三章 AlGaN/GaN HEMT之脈衝小訊號參數分析 47
3.1 元件之脈衝量測與電流散射分析 47
3.2 元件高頻特性 50
3.3 小訊號等效模型建立 51
3.3.1 外部寄生參數萃取 51
3.3.2 內部本質參數萃取 57
3.4 元件之動態小訊號特性 58
3.5 物理機制探討與結論 67
4 第四章 結論 70
參考文獻 71
參考文獻 [1] SpaceX 於英國推出「星鏈」衛星網路服務,每月 89 英鎊,科技新報, Jan. 2021 [Online] Available: https://technews.tw/2021/01/11/spacex-starlink-in-uk/
[2] What is the Internet of Things and how does it Work? , GlobalSign Blog, Nov. 2021 [Online] Available: https://www.globalsign.com/en-sg/blog/what-internet-things-and-how-does-it-work
[3] 是德攜手高通、SGS加速推動C-V2X測試, EE Times Taiwan, Oct 2020 [Online] Available: https://www.eettaiwan.com/20201006np21/
[4] What Is Virtual Reality? Everything You Need to Know, simplilearn, Mar. 2023 [Online] Available: https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-virtual-reality
[5] Semiconductor TODAY, "GaN to grow at 9% CAGR to over 18% of RF device market by 2020", Semiconductor TODAY, 2014.
[6] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, " A review of Ga2O3 materials, processing, and devices", Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018.
[7] Z. Zong and H. Lin, RF GaN Market: Applications, players, devices, and technologies 2018- 2023, Yole Développement, Lyon, France, 2018.
[8] Qorvo Inc., “Gallium Nitride – A Critical Technology for 5G,” Dec. 2016 [Online] Available:https://www.qorvo.com/resources/d/qorvo-gallium-nitiride-gan-a-critical-technology-for-5g-white-paper
[9] R. Brown, "A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness", Phd thesis, University of Glasgow, Jul. 2015.
[10] G. Raj, M. Kumar, C.K. Sarkar, and C.K. Sarkar "Polarization and Breakdown Analysis of AlGaN Channel HEMTs with AlN Buffer", World Journal of Condensed Matter Physics, pp. 232-243, Jan. 2015.
[11] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs", IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001.
[12] N. Kaminski, and O. Hilt, "SiC and GaN devices – wide bandgap is not all the same", IET Circuits, Devices and Systems, vol. 8, no. 3, pp. 227-236, May. 2014.
[13] H. Y. Chen, P. T. Tu, P.C. Yeh, P. J. Tzeng, S. S. Sheu, C. I. Wu I. Sanyal, and J. I. Chyi "AlInGaN/GaN HEMTs with Different GaN Cap Layer on Low Resistivity Silicon Substrate", 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), April 2022.
[14] W. Liu, B. Romanczyk, M. Guidry, N. Hatui, C. Wurm, W. Li, P. Shrestha, X. Zheng, S. Keller, and Umesh K. Mishra, "6.2 W/Mm and Record 33.8% PAE at 94 GHz From N-Polar GaN Deep Recess MIS-HEMTs With ALD Ru Gates", IEEE Microwave and Wireless Component Letters, Vol. 31, No. 6, pp. 748-751, June 2021.
[15] W. Li, B. Romanczyk, M. Guidry, E. Akso , N. Hatui, C. Wurm, W. Liu, P. Shrestha, H. Collins, C. Clymore, S. Keller, and U. K. Mishra, "Record RF Power Performance at 94 GHz From Millimeter-Wave N-Polar GaN-on-Sapphire Deep-Recess HEMTs", IEEE Transactions on Electron Devices, Vol. 70, No. 4, pp. 2075-2080, April 2023.
[16] J. Joh and J. A. del Alamo, "A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors", IEEE Transactions on Electron Devices, Volume. 58, Issue. 1, pp. 132-140, Jan. 2011.
[17] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, and E. Zanoni, "Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements", IEEE Transactions on Electron Devices, Vol. 60, No. 10, pp. 3166-3175, Oct. 2013.
[18] M. Meneghini, D. Bisi, D. Marcon, S. Stoffels, M. V. Hove, T. L. Wu, S. Decoutere, G. Meneghesso, and Enrico Zanoni, "Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications", IEEE Transactions on Power Electrons, Vol. 29, No. 5, pp. 2199-2207, May 2014.
[19] C. Wilson, A. Zhu and J. King, "Intrinsic Capacitance Extraction from Pulsed S-parameters", 2019 14th European Microwave Integrated Circuits Conference (EuMIC), Sep. 2019.
[20] A. M. Angelotti, G. P. Gibiino, C. Florian and A. Santarelli, "Narrow-pulse-width double-pulsed S-parameters measurements of 100-nm GaN-on-Si HEMTs", 2019 14th European Microwave Integrated Circuits Conference (EuMIC), Sep. 2019.
[21] Y. M. Hsin, Y. N. Zhong, and Z. W. Liu, "Variation of Intrinsic Components from Small-Signal Model of AlGaN/GaN HEMTs in Linear and Saturation Regions after Off-state Bias", 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2017.
[22] K. Ranjan, "Self heating and trapping effect in AlGaN/GaN high electron mobility transistors on CVD diamond", Phd thesis, Nanyang Technological University, 2019.
[23] R. Ye, X. L. Cai, C. L. Du, H. J. Liu, Y. Zhang, X. Y. Duan, and J. J. Zhu, "An Overview on Analyses and Suppression Methods of Trapping Effects in AlGaN/GaN HEMTs", IEEE Access, Vol. 10, pp. 21759-21773, Dec. 2021.
[24] 楊士陞, "氮化鎵高電子遷移率電晶體之低頻雜訊探討與功率放大器應用", 國立中央大學碩士論文, June 2021.
[25] M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Chini, A. Pantellini, C. Lanzieri, A. Nanni, and G. Meneghesso, "Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements", IEEE Transactions on Electron Devices, Vol. 61, No. 12, pp. 4070-4077, Dec. 2014.
[26] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method to determining the FET small-signal circuit", IEEE Transactions on Microwave Theory Tech., Vol. 36, No. 7, pp. 1151-1159, July 1988.
[27] L. Yang, and S. I. Long, "New method to measure the source and drain resistance of the GaAs MESFET", IEEE Electron Device Lett., Vol. 7, No. 2, pp. 75-77, Feb. 1986.
[28] P. M. White, and R. M. Healy, "Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 12, pp. 453-454, Dec. 1993.
[29] M. Berroth, and R. Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit", IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 7, pp. 891 -895, July 1990.
[30] G. Avolio, A. Raffo, V. Vadalà, and G. Vannini, "Dynamic-Bias S-Parameters: A New Measurement Technique for Microwave Transistors", IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, pp. 3946 - 3955, Nov. 2016.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2023-10-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明