博碩士論文 110522077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.221.243.29
姓名 陳佳均(Jia-Jun Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以可見式思考模組與群體程式設計提升程式設計學習成效之研究
(A Study on Improving Programming Learning Performance through Visible Thinking Modules and Mob Programming)
相關論文
★ 條件判斷式事件驅動程式設計之C語言擴充★ 基于小波变换的指纹活度检测,具有聚集 LPQ 和 LBP 特征
★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統★ 提升乳癌篩檢效率之批次排程框架
★ 設計具有可視化思維工具和程式作為單一步的 輔助學習程式之棋盤式遊戲★ TOCTOU 漏洞的靜態分析與實作
★ 用於繪製風力發電控制邏輯之特定領域語言★ 在Java程式語言中以雙向結構表達數學公式間關聯之設計與實作
★ 支援模組化規則製作之程式碼轉換工具★ 基於替代語意的 pandas DataFrame 靜態型別檢查器
★ 自動化時間複雜度分析的設計與實作–從軟體層面評估嵌入式系統的功率消耗★ 以震波層析成像為應用之特定領域語言實作與分析
★ 用特徵選擇減少疲勞偵測腦電圖通道數★ 一個應用紙本運算與數位化於程式設計學習使程序性思維可視化的機制
★ 基於抽象語法樹的陣列形狀錯誤偵測★ 從合作學習角色分工獲得函式程式設計思維學習遞迴程式的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-25以後開放)
摘要(中) 在程式設計的教學中,理論教學與實踐學習之間的銜接過程非常重要。但是由於程式設計上的抽象性,這個過程對新手學習者而言通常難以理解,他們容易在學習的過程中遇到挫折而放棄學習。此類問題更常於科學相關的科目發生,因此如何降低學習難度以及提升新手學習體驗一直是被重視的問題。在本研究中探討了一些相關研究文獻,整理新手學習者學習程式設計時可能遇到的困難,並於本研究中應用了部分被認為有效的教學策略,再以可見式思考與合作編寫程式為重點進行教學實驗,旨在提升學生的學習成效與學習體驗。
本研究嘗試將可見式思考模組學習單與群體程式設計用於程式設計教學中,以學習單作為思考模組,將文字層級與程式碼層級間的轉換的抽象過程變為可見,使學生更容易理解程式設計中抽象的部分,從而逐步引導他們展開解題思路,再讓學生藉由群體程式設計學習合作編寫程式,從小組共同編寫程式的過程中獲得合作經驗,學習組內其他學生的編寫程式技巧。本研究分析了實驗獲得的前後測數據和學生的回饋,其結果顯示本研究中應用的結合教學方法在學生的成績和學習體驗兩個方面皆產生了正向影響。
摘要(英) In programming education, the bridging process between theoretical instruction and practical learning is crucial. For novice learners in this field, this process is not straightforward, as the abstract nature of programming is often challenging to grasp. Consequently, students may easily encounter setbacks during learning, leading to the possibility of abandoning their studies. Such issues are even more prevalent in science-related subjects. Therefore, reducing the learning difficulty for novice learners to enhance the learning experience has always been a significant concern. This study delves into relevant research literature, compiling the difficulties novice learners may face when learning programming. Applying recognized effective teaching strategies, the study focuses on conducting instructional experiments with an emphasis on making thinking visible and collaborative programming, aiming to improve students′ learning outcomes and experiences.
The research attempts to integrate visible thinking module worksheets and Mob programming into programming education. Using worksheets as a thinking module makes the abstract process of transitioning between text-level and code-level visible. This allows students to better understand the abstract aspects of programming, gradually guiding them in developing problem-solving approaches. Students are then engaged in collaborative programming through Mob programming, acquiring teamwork experience and learning coding skills from peers within the group. The study analyzes pre- and post-test data along with student feedback obtained from the experiments, revealing positive impacts on both students′ academic performance and learning experiences resulting from the application of the combined teaching methods.
關鍵字(中) ★ 可見式思考
★ 程式設計教學
★ 群體程式設計
★ 學習單
關鍵字(英) ★ Make Thinking Visible
★ Programming Learning
★ Mob Programming
★ Worksheets
論文目次 摘要 V
Abstract VI
目錄 VIII
圖目錄 XI
表目錄 XII
一、 緒論 1
1-1. 研究動機與背景 1
1-2. 研究目的與問題 3
1-2-1. 研究目的 3
1-2-2. 研究問題 3
1-3. 研究限制 4
二、 文獻探討 5
2-1. 程式設計教育 5
2-2. 可見式思考 7
2-3. 群體程式設計 9
2-4. 文獻探討總結 10
2-4-1. 程式設計教育文獻探討總結 11
2-4-2. 可見式思考文獻探討總結 11
2-4-3. 群體程式設計文獻探討總結 11
三、 研究方法 13
3-1. 實驗基本介紹 13
3-1-1. 實驗課程介紹 13
3-1-2. 實驗樣本 14
3-1-3. 授課內容 15
3-2. 研究實驗流程 16
3-3. 教學研究設計 18
3-3-1. 實驗階段 18
3-3-2. 可見式思考模組學習單 20
3-3-3. 群體程式設計 27
3-4. 研究成效評估方法 29
3-4-1. 前測 29
3-4-2. 後測 29
四、 研究結果 31
4-1. 前測結果分析 32
4-1-1. 前測各項統計 32
4-1-2. 前測分析結論 33
4-2. 後測結果分析 34
4-2-1. 後測各項統計 34
4-2-2. 單因子共變數分析 36
4-2-3. 後測分析與總結 37
4-3. 學生意見回饋與觀察 38
4-3-1. 學生意見回饋 38
4-3-2. 課堂觀察探討 39
五、 結論與未來展望 41
5-1. 結論 41
5-2. 未來展望與建議 42
5-2-1. 可見式思考模組學習單 42
5-2-2. 群體程式設計 43
5-2-3. 實作系統提議 44
參考文獻 46
附錄一 可見式思考模組學習單 52
附錄二 前測問題 65
附錄三 後測問題 68
參考文獻 莊永裕、陳佳均 (2023)。可見式思考模組與群體程式設計的組合:提高程式設計課程學習體驗之研究。稿件審查中。
Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10),
70-77. doi: 10.1109/2.796139.
Buchan, J., & Pearl, M. (2018). Leveraging the Mob Mentality: An Experience Report
on Mob Programming. In Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018 (pp. 199–204).
Association for Computing Machinery. https://doi.org/10.1145/3210459.3210482
Cao, L., & Xu, P. (2005). Activity Patterns of Pair Programming. In Proceedings of the
38th Annual Hawaii International Conference on System Sciences, pp. 88a-88a.
doi: 10.1109/HICSS.2005.66.
Chipidza, W., Suksa-Ngiam, W., Kim, M. S., Moss, F. H., Mbugua, K., Olfman, L., &
Ryan, T. (2020). All Together Now: A Framework for Research on Mob
Programming.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological
Science, 1(3), 98-101.
Corney, M., Teague, D., & Thomas, R. (2010). Engaging students in programming.
In Proceedings of the Twelfth Australasian Computing Education Conference
(pp. 63-72). Australian Computer Society.
Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during program
comprehension?. International Journal of Human‐Computer Interaction, 3(2),
199-222.
Davies, S. P. (1993). Models and theories of programming strategy. International
Journal of Man-Machine Studies, 39(2), 237-267.
https://doi.org/10.1006/imms.1993.1061.
Dinh, J. V., & Salas, E. (2017). Factors that influence teamwork. The Wiley Blackwell
handbook of the psychology of team working and collaborative processes, 13-41.
Eckerdal, A. (2014). Relating Theory and Practice in Laboratory Work: A Variation
Theoretical Study. Studies in Higher Education, 40(5), 867–880. doi:
10.1080/03075079.2013.857652.
Felder, R. M. (1988). Learning and Teaching Styles in Engineering Education. Journal
of Engineering Education, 78(7), 674-681.
Gomes, A., & Mendes, A. J. (2007, June). An environment to improve programming
education. In Proceedings of the 2007 international conference on Computer
systems and technologies (pp. 1-6).
Höök, J., & Eckerdal, A. (2015). On the bimodality in an introductory programming
course. An analysis of student performance factors. In Proceedings of the 2015
Learning and Teaching in Computing and Engineering Conference, Taipei,
Taiwan.
Kerr, P. (2016). Adaptive learning. Elt Journal, 70(1), 88-93.
Kolb, D. A. (1985). Learning Style Inventory: Technical Manual. McBer and
Company, Boston.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and
development. FT Press.
Kumar, A. N. (2003). Learning programming by solving problems. In Informatics
Curricula and Teaching Methods: IFIP TC3/WG3. 2 Conference on Informatics
Curricula, Teaching Methods and Best Practice (ICTEM 2002) July 10–12, 2002,
Florianópolis, SC, Brazil (pp. 29-39). Springer US.
Kuo, W.-C., & Hsu, T.-C. (2020). Learning computational thinking without a
computer: How computational participation happens in a computational thinking
board game. The Asia-Pacific Education Researcher, 29(1), 67–83.
https://doi.org/10.1007/s40299-019-00479-9
Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of
novice programmers. ACM SIGCSE Bulletin, 37(3), 14–18. doi:
10.1145/1151954.1067453.
Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework
and taxonomy of team processes. Academy of Management Review, 26(3), 356-
376.
McLeod, L., & MacDonell, S. G. (2011). Factors that affect software systems
development project outcomes: A survey of research. ACM Computing Surveys
(CSUR), 43(4), 1-56.
McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2003). The impact of pair
programming on student performance, perception, and persistence. In
Proceedings of the 25th International Conference on Software Engineering, 602–
607. Los Alamitos, CA: IEEE Computer Society.
Mohamed Shuhidan, S., Hamilton, M., & D′Souza, D. (2011, June). Understanding
novice programmer difficulties via guided learning. In Proceedings of the 16th
annual joint conference on Innovation and technology in computer science
education (pp. 213-217).
Muñoz, J. L. R., Ojeda, F. M., Jurado, D. L. A., Peña, P. F. P., Carranza, C. P. M.,
Berríos, H. Q., Molina, S. U., Farfan, A. R. M., Arias-Gonzáles, J. L., & VasquezPauca, M. J. (2022). Systematic review of adaptive learning technology for
learning in higher education. Eurasian Journal of Educational Research, 98(98),
221-233.
Myers, I. B., & McCaulley, M. H. (1985). Manual: A Guide to the Development and
Use of the Myers-Briggs Type Indicator. Palo Alto, CA: Consulting Psychologists
Press.
Papalazarou, C. (2015). Making thinking visible in the English classroom: nurturing a
creative mind-set. Creativity in the English language classroom, 37-43.
Papastergiou, M. (2009). Digital game-based learning in high school computer science
education: Impact on educational effectiveness and student motivation.
Computers & Education, 52(1), 1-12.
Patrick, H., & Mantzicopoulos, P. (2015). Young children’s motivation for learning
science. In Research in Early Childhood Science Education (pp. 7–34). Springer.
Perkins, D., & Ritchhart, R. (2003). Making thinking visible. Harvard Graduate School
of Education.
Persky, A., & Robinson, J. (2017, November 01). Moving from Novice to Expertise
and Its Implications for Instruction. American Journal of Pharmaceutical
Education, 81, 6065. https://doi.org/10.5688/ajpe6065
Pyhäjärvi, M., & Falco, L. (2018). The Mob Programming Guidebook.
Ritchhart, R., & Perkins, D. (2008). Making thinking visible. Educational Leadership,
65(5), 57–61.
Ritchhart, R., Church, M., & Morrison, K. (2011). Making thinking visible: How to
promote engagement, understanding, and independence for all learners. John
Wiley & Sons.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer science education, 13(2), 137-172.
Salmon, A. K., & Lucas, T. (2011). Exploring young children′s conceptions about
thinking. Journal of Research in Childhood Education, 25(4), 364-375.
Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist,
26(3-4), 299-323. DOI: 10.1080/00461520.1991.9653136
Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game-based learning
for computer science education.
Shiraishi, M., Washizaki, H., Fukazawa, Y., & Yoder, J. (2019). Mob Programming: A
Systematic Literature Review. 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), Milwaukee, WI, USA, pp. 616-621, doi:
10.1109/COMPSAC.2019.10276.
Tishman, S. (2000). Why teach habits of mind. Habits of Mind: A Developmental
Series, 41-52.
Videnovik, M., Vold, T., Kiønig, L., Madevska Bogdanova, A., & Trajkovik, V. (2023).
Game-based learning in computer science education: a scoping literature review.
International Journal of STEM Education, 10(1), 54.
Wu, S.-y., Fang, J.-c., & Lian, S.-m. (2018, June 14–16). Design a computational
thinking board game based on programming element. In International
Conference on Computational Thinking Education 2018.
Fa Zhang & Christine L. Bae (2020). Motivational factors that influence student
science achievement: a systematic literature review of TIMSS studies.
International Journal of Science Education, 42(17), 2921-2944. doi:
10.1080/09500693.2020.1843083.
YungYu Zhuang, Yu-Hsuan Lin, Mahesh Liyanawatta, Andito Haryo Saputro, Yuniati
Dwi Utami & Jen-Hang Wang (2023). An interactive programming learning
environment supporting paper computing and immediate evaluation for making
thinking visible and traceable. Interactive Learning Environments, DOI:
10.1080/10494820.2023.2212709.
Zhuang, Y., Saputro, A., Liyanawatta, M., Wang, J.-H., Yang, S.-H., & Chen, G.-D.
(2021, June 2–4). Making the thinking results of programming visible and
traceable with a multi-layer board game. In The 5th APSCE International
Conference on Computational Thinking and STEM Education, National
Institute of Education, Nanyang Technological University.
Zuill, W., & Meadows, K. (2016). Mob programming: A whole team approach. In
Agile 2014 Conference, Orlando, Florida (Vol. 3).
指導教授 莊永裕(Yung-Yu Zhuang) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明