以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:16 、訪客IP:18.119.119.252
姓名 賴群(Lai Chiun) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 一種基於類表面電漿之高頻地波雷達部署方法
(A Deployment Method of High-Frequency Ground Wave Radars Using Spoof Surface Plasmons)相關論文
★ 基於慢波結構之槽孔天線微型化 ★ 應用於毫米波封裝之鎊線分析與設計 ★ 應用於毫米波封裝之覆晶連結分析與設計 ★ 基於類表面電漿之機械可調導波結構於高頻地波雷達之應用 ★ 用於第五代行動通訊之類表面電漿微型圓極化槽孔天線 ★ 一種用於陣列天線場型合成之混合最佳化方法 ★ 以超表面實現可展開網狀反射面天線之增益改 進 ★ 應用於雷達系統之類表面電漿微型化環形槽孔天線 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2028-12-27以後開放) 摘要(中) 本論文將會針對地波雷達於傳播路徑上的模態不匹配與接收端所產生的破壞性干
涉此兩大議題提出一種全新的雷達部署方法。其部署方式的關鍵就在於把激發源的位置
從地面上改由從地底激發,並透過以類表面電漿結構作為模態過渡的橋樑,將其放置於
地波雷達天線的上方且與海水相鄰,使其不同頻段產生的類表面電漿模態電場分布與地
波相似,幫助地波雷達天線輻射能量耦合(即為能量轉移)成地波進而提高激發地波的效
率。此外,為了驗證在不同頻段產生與地波相似的類表面電漿模態電場分布,本論文使
用本徵模態法與多層同/異向性之週期性結構反射/透射法進行模態分析。
本論文的激發源分為兩種,半波長偶極天線陣列以及洩漏波天線,因此第二章也會
論述各自的設計方法與流程,並將經基因演算法設計後的洩漏波天線與傳統串列式饋入
貼片天線相比較,並在設計時間與主波束角偏移的部分取得一些優勢。第三章則是整個
地波雷達場景的模擬與量測結果,並且透過量測結果得知本論文提出的雷達部署方法確
實可行,在量測的頻段(8GHz-17GHz)中達到地波增強的效果,並且具有 66%的相對頻
寬,可涵蓋現有的地波雷達頻段並實際應用。摘要(英) This thesis presents a novel radar deployment method aimed at addressing two major issues
in ground wave radar : modal mismatch along the propagation path and the destructive
interference generated at the receiving end. The key to this deployment approach lies in
relocating the excitation source from the ground surface to the subterranean level. By
employing a metallic, expandable periodic structure as a bridge for modal transition, this
excitation source is placed above the ground wave radar antenna, adjacent to seawater. This
placement results in the generation of surface plasmon mode field distributions in different
frequency bands that resemble ground waves, assisting in the efficient coupling and transfer
of radiation energy from the ground wave radar antenna into ground waves, thereby enhancing
the efficiency of exciting ground waves.Additionally, to verify the generation of surface
plasmon mode field distributions similar to ground waves in different frequency bands, this
thesis utilizes the eigenmode method and the reflection/transmission method of multi-layer
periodic structures with both isotropic and anisotropic properties for modal analysis.
III
The excitation sources in this thesis are divided into two types: half-wavelength dipole
antenna arrays and leaky wave antennas. Therefore, Chapter 2 also discusses their respective
design methods and processes. A comparison is made between the leaky wave antenna designed
using a genetic algorithm and traditional serial-fed patch antennas, highlighting advantages in
design time and main beam angle offset.Chapter 3 focuses on the simulation and measurement
results of the entire ground wave radar scenario. Through these results, it is confirmed that the
radar deployment method proposed in this thesis is indeed feasible. It achieves ground wave
enhancement in the measured frequency range (8GHz-17GHz) and possesses a relative
bandwidth of 66%. This bandwidth covers existing ground wave radar frequency bands and is
suitable for practical applications.關鍵字(中) ★ 類表面電漿 關鍵字(英) ★ Spoof Surface Plasmons 論文目次 目錄
摘要............................................................................................................................................ I
Abstract ....................................................................................................................................II
誌謝......................................................................................................................................... IV
目錄...........................................................................................................................................V
圖目錄....................................................................................................................................VII
表目錄.................................................................................................................................... XV
第一章 緒論............................................................................................................................1
1-1 研究動機....................................................................................................................1
1-2 超視距雷達................................................................................................................2
1-3 地波議題&設計理念.................................................................................................5
1-4 章節架構..................................................................................................................10
第二章 類表面電漿以及天線激發源之理論與驗證.......................................................... 11
2-1 類表面電漿.............................................................................................................. 11
2-1-1 類表面電漿模態介紹...................................................................................... 11
2-1-2 多層同/異向性之週期性結構反射/透射法....................................................17
2-1-3 本徵模分析......................................................................................................24
2-2 洩漏波天線..............................................................................................................31
2-2-1 費洛凱理論與空間諧波..................................................................................31
2-2-2 色散分析與色散曲線圖..................................................................................33
2-2-3 基因演算法流程..............................................................................................37
2-2-4 基因演算法與洩漏波天線之整合應用..........................................................38
2-2-5 基於基因演算法之洩漏波天線......................................................................45
VI
2-3 半波長偶極天線陣列..............................................................................................60
2-3-1 半波長偶極天線..............................................................................................60
2-3-2 半波長偶極天線陣列......................................................................................63
第三章 量測結果與驗證......................................................................................................86
3-1 使用半波長偶極天線陣列作為激發源..................................................................86
3-2 使用洩漏波天線作為激發源................................................................................108
3-3 使用平面波作為激發源........................................................................................120
第四章 結論........................................................................................................................128
參考文獻................................................................................................................................129
附錄一、利用基因演算法設計洩漏波天線之程式碼........................................................135
附錄二、Anritsu Time Gating 步驟 ..................................................................................154
附錄三、以 dipole antenna 代替平面波.............................................................................157
附錄四、洩漏波天線之六邊形孔徑大小............................................................................162
附錄五、 ITU-R P.676-13 的建議書 ..................................................................................164
附錄六、 邊界條件 layered impedance 設定順序............................................................165
附錄七、發射天線放置在地底與地面上之比較................................................................166參考文獻 [1] Y. Morioka, T. Sota and M. Nakagawa, "An anti-car collision system using GPS and 5.8
GHz inter-vehicle communication at an off-sight intersection," Vehicular Technology
Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference
(Cat. No.00CH37152), Boston, MA, USA, 2000, pp. 2019-2024 vol.5, doi:
10.1109/VETECF.2000.883230.
[2] J. E. Stailey and K. D. Hondl, "Multifunction Phased Array Radar for Aircraft and Weather
Surveillance," in Proceedings of the IEEE, vol. 104, no. 3, pp. 649-659, March 2016, doi:
10.1109/JPROC.2015.2491179.
[3] G. Viswanathan, R. C. Bhatia, V. P. Kamble and S. R. Rao, "Indian Doppler weather radar
system-an overview," IGARSS′97. 1997 IEEE International Geoscience and Remote
Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable
Development, Singapore, 1997, pp. 1129-1131 vol.3, doi: 10.1109/IGARSS.1997.606373.
[4] F. Liang, M. Liu, H. Li, F. Qi, Z. Li and J. Wang, "Through-the-wall imagery of human
vital signs using UWB MIMO bioradar," 2017 IEEE 2nd Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China,
2017, pp. 924-927, doi: 10.1109/ITNEC.2017.8284871.
130
[5] M. Menelle, G. Auffray and F. Jangal, "Full digital High Frequency Surface Wave Radar:
French trials in the biscay bay," 2008 International Conference on Radar, Adelaide, SA,
Australia, 2008, pp. 224-229, doi: 10.1109/RADAR.2008.4653922.
[6] A. Dzvonkovskaya, L. Petersen and T. L. Insua, "Real-time capability of meteotsunami
detection by WERA ocean radar system," 2017 18th International Radar Symposium (IRS),
Prague, Czech Republic, 2017, pp. 1-10, doi: 10.23919/IRS.2017.8008096.
[7] C. Zhao, Z. Chen, C. He, F. Xie and X. Chen, "Wind direction measurements using HF
ground wave radars based on a circular receive array," 2017 Progress in Electromagnetics
Research Symposium - Fall (PIERS - FALL), Singapore, 2017, pp. 2393-2397, doi:
10.1109/PIERS-FALL.2017.8293538.
[8] G. S. Antonio and Y. I. Abramovich, "Two-dimensional High Frequency Surface Wave
Radar receive array design," 2017 IEEE Radar Conference (RadarConf), Seattle, WA,
USA, 2017, pp. 1402-1407, doi: 10.1109/RADAR.2017.7944426.
[9] A. Dzvonkovskaya, L. Petersen and T. Helzel, "HF Ocean Radar with a Triangle
Waveform Implementation," 2018 19th International Radar Symposium (IRS), Bonn,
Germany, 2018, pp. 1-7, doi: 10.23919/IRS.2018.8448148.
131
[10] C. Wang et al., "Validation and Intercomparison of Sea State Parameter Estimation With
Multisensors for OSMAR-S High-Frequency Radar," in IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 10, pp. 7552-7565, Oct. 2020, doi:
10.1109/TIM.2020.2986101.
[11] L. Y. O. Yang and S. Y. Chen, "Signal-to-noise ratio enhancement of high frequency
ground wave radar based on a metamaterial-based transition structure," 12th European
Conference on Antennas and Propagation (EuCAP 2018), London, UK, 2018, pp. 1-4, doi:
10.1049/cp.2018.1063.
[12] 鄭凱璘。「基於類表面電漿之機械可調導波結構於高頻地波雷達之應用」。碩士論文,
國立中央大學電機工程學系,2022。<https://hdl.handle.net/11296/6x8q77>。
[13] 吳民耀、劉威志。〈表面電漿子理論與模擬〉。《物理雙月刊》 (2006 年): 頁 486-496。
[14] J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons
with Structured Surfaces," Science, vol. 305, no. 5685, pp. 847-848, 2004/08/06.
[15] A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer
Surface Plasmons," Science, vol. 308, no. 5722, pp. 670-672, 2005/04/29.
[16] F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes in them: new
plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, vol. 7, no. 2, pp.
S97- 109 S101, 2005/01/21.
132
[17] R. J. Riddolls and S. Hénault, "Receive Arrays for Polar Over-the-Horizon Radar," 2020
IEEE International Radar Conference (RADAR), Washington, DC, USA, 2020, pp. 442-
447, doi: 10.1109/RADAR42522.2020.9114668.
[18] Ji, Y.; Zhang, J.; Wang, Y.; Yue, C.; Gong, W.; Liu, J.; Sun, H.; Yu, C.; Li, M. Coast–Ship
Bistatic HF Surface Wave Radar: Simulation Analysis and Experimental Verification.
Remote Sens. 2020, 12, 470. https://doi.org/10.3390/rs12030470.
[19] Anderson, S. (2011). HF Skywave Radar Performance in the Tsunami Detection and
Measurement Role. InTech. doi: 10.5772/13429.
[20] L. -Y. Ou Yang, C. -H. Tsai and S. -Y. Chen, "A Planar and Subwavelength Open Guided
Wave Structure Based on Spoof Surface Plasmons," in IEEE Photonics Journal, vol. 6, no.
6, pp. 1-19, Dec. 2014, Art no. 4802119, doi: 10.1109/JPHOT.2014.2366172.
[21] J.B. Pendry et al., Mimicking Surface Plasmons with Structured Surfaces.Science305,847-
848(2004).DOI:10.1126/science.1098999.
[22] Miguel Navarro-Cía, Miguel Beruete, Spyros Agrafiotis, Francisco Falcone, Mario Sorolla,
and Stefan A. Maier, "Broadband spoof plasmons and subwavelength electromagnetic
energy confinement on ultrathin metafilms," Opt. Express 17, 18184-18195 (2009)
[23] Stefan, A., Maier. (2007). Plasmonics: Fundamentals and Applications.
133
[24] G. Zhao, Q. Xu, Y. Zhou and M. S. Tong, "A Magneto-Electric Dipole Antenna Linear
Array with High Gain and Wide Bandwidth," 2020 IEEE International Symposium on
Antennas and Propagation and North American Radio Science Meeting, Montreal, QC,
Canada, 2020, pp. 345-346, doi: 10.1109/IEEECONF35879.2020.9329630.
[25] P. Jiang, W. Jiang and S. Gong, "An Ultra-wideband Bandstop Frequency Selective
Surface Based on Spoof Surface Plasmon Polaritons," 2020 9th Asia-Pacific Conference
on Antennas and Propagation (APCAP), Xiamen, China, 2020, pp. 1-2, doi:
10.1109/APCAP50217.2020.9246014.
[26] Q. Ji, L. Zhang, J. Zhang, Y. Chen, C. Mao and Y. He, "A 77 GHz Series-fed Leaky-Wave
Antenna for Automotive Radar System," 2022 IEEE MTT-S International Wireless
Symposium (IWS), Harbin, China, 2022, pp. 1-3, doi: 10.1109/IWS55252.2022.9977702.
[27] "Ant colony algorithm with genetic characteristic and its application in PID parameters
optimization," 2008 Chinese Control and Decision Conference, Yantai, China, 2008, pp.
5069-5074, doi: 10.1109/CCDC.2008.4598295.
[28] N. C. Hou, N. S. Hong, C. K. On and J. Teo, "Infinite Mario Bross AI using Genetic
Algorithm," 2011 IEEE Conference on Sustainable Utilization and Development in
Engineering and Technology (STUDENT), Semenyih, Malaysia, 2011, pp. 85-89, doi:
10.1109/STUDENT.2011.6089330.
134
[29] S. F. Mahmoud and Y. M. M. Antar, "High Frequency Ground Wave Propagation," in IEEE
Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5841-5846, Nov. 2014, doi:
10.1109/TAP.2014.2346211.
[30] Akira Ishimaru, "Electromagnetic Wave Propagation, Radiation, and Scattering: From
Fundamentals to Applications".
Persistent Link : https://ieeexplore.ieee.org/servlet/opac?bknumber=8052366.指導教授 歐陽良昱(Liang-Yu Ou Yang) 審核日期 2024-1-3 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare