博碩士論文 110521156 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.118.198.28
姓名 陳泓佑(Hung-Yu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於基板合成波導半模共振器之三工器與雙工威爾金森功率分波器
(Triplexer and Diplexing Wilkinson Power Divider Based on Half-mode SIW Cavity)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 本論文提出了基於基板合成波導半模共振器的微小化三工器與雙工三頻帶威爾金森功率分波器的設計。文中三工器與功率分波器分別利用基板合成波導半模三模態與雙模態共振器做為第一級共振電路,透過給予適當的長寬比,使得半模共振器的前三個共振模態分別為TE101、TE301與TE102。其中,在三工器中,半模共振器之TE101及TE301的操作頻率可以透過調整共振器之長寬比加以控制,使其分別操作於3 GHz和4.5 GHz,並利用上層金屬之微擾槽孔獨立控制半模共振器的TE102模態,使其操作於3.75 GHz,再透過結合半模及四分之一模單模態腔體,達到良好的止帶表現以及微小化的效果。另外,雙工功率分波器的部分則是利用半模共振器的前兩個模態,TE101及TE301,分別操作於3 GHz和4.5 GHz,在兩個頻率下透過單輸入雙輸出的電路結構,達到功率分波的效果,並且在輸出之間加上100歐姆電阻以提高通帶內隔離度。最後,透過在雙工功率分波器的高頻頻道加上帶止共振器,在通帶內加入傳輸零點,使原本的單通帶響應分割為雙通帶響應,進而達到雙工三頻帶功率分波的效果,最終實現單層多種電路特性結合之電路,而三個通帶的中心頻率分別是3 GHz、4.25 GHz和4.55 GHz,零點位置則在4.4 GHz。本論文皆對所有電路提供量測數據與模擬結果之比較。
摘要(英) This thesis presents compact triplexer and diplexing tri-band Wilkinson power divider based on substrate integrated waveguide half-mode resonator. The proposed triplexer and power divider respectively utilize a substrate integrated waveguide half-mode triple-mode and a dual-mode resonator as the first order resonant cavity. By properly giving the length and width of the resonator, the first three modes of the resonator would be TE101、TE301 and TE102 mode. For the triplexer, the operating frequencies of TE101 and TE301 mode, which are controlled by the width and length of the resonator, are at 3 GHz and 4.5 GHz, and by utilizing perturbation slot at the top metal layer, the operating frequency of TE102 mode can be controlled individually, which is designed at 3.75 GHz. The triplexer features compact size and good stop band performance by combining half-mode and quarter-mode cavity. On the other hand, the proposed diplexing power divider utilize the first two modes, TE101¬ and TE301, which are operating at 3 GHz and 4.5 GHz, respectively. By the structure of single input and double output which implement the power division at both channel, and by placing resistors of 100-ohm between output ports to obtain good in-band isolations. Finally, by adding bandstop resonators at the second channel to introduce an extra transmission zero, it separates the single-band response at the higher frequency into a dual-band response to implement a diplexing tri-band power divider, which features a component of single layer of multi-functional combination. Three passbands are located at 3 GHz、4.25 GHz and 4.55 GHz, respectively. A transmission zero is set to be at 4.4 GHz. To validate the design concept, the proposed triplexer and power divider are designed, fabricated and measured.
關鍵字(中) ★ 基板合成波導
★ 三工器
★ 功率分波器
關鍵字(英) ★ SIW
★ Triplexer
★ Power Divider
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 濾波器簡介 1
1-2 研究動機 3
1-3 相關研究 4
1-3-1 三工器文獻回顧 4
1-3-2 功率分波器文獻回顧 5
1-4 章節概述 5
第二章 基板合成波導簡介 6
2-1半模與四分之一模基板合成波導 6
2-2基板合成波導轉接結構 9
第三章 基板合成波導微型化三工器 11
3-1 三工器原理與架構 11
3-1-1 半模三模態共振器之微擾槽孔分析 11
3-1-2 微擾槽孔對頻率的影響 15
3-2 三工器設計 17
3-2-1 參數萃取 17
3-2-3 三工器電路配置 20
3-3 三工器模擬與量測 22
第四章 基板合成波導威爾金森功率分波器 28
4-1威爾金森功率分波器 28
4-2 雙工威爾金森功率分波器設計 30
4-2-1參數萃取 31
4-2-2 電路配置 34
4-3 雙工威爾金森功率分波器模擬與量測 35
4-4三通帶雙工威爾金森功率分波器設計 41
4-4-1參數萃取 41
4-4-2電路配置 41
4-5三通帶威爾金森功率分波器模擬與量測 43
第五章 結論 49
第六章 參考文獻 50


圖目錄
圖1-1-1射頻外插式接收機系統方塊圖。 1
圖1-1-2帶通濾波器的頻率響應示意圖。 2
圖1-2-1不同共振結構之成本、損耗和體積關係圖[1]。 3
圖2-1-1 矩形波導三維示意圖。 6
圖2-1-2 全模基板合成波導共振器。(a)三維示意圖、(b)俯視圖。 7
圖2-1-3 半模基板合成波導共振器俯視圖。 8
圖2-1-4 四分之一模基板合成波導共振器俯視圖。 9
圖2-2-1電場分布圖。(a)矩形波導、(b)微帶線 10
圖2-2-2 轉接電路[30][31]。(a)槽孔式轉接電路、(b)錐形轉接電路 10
圖3-1-1 三工器電路架構圖 11
圖3-1-2 TE101模態。 (a)電場分布圖、(b)表面電流分布圖 12
圖3-1-3 TE301模態。(a)電場分布圖、(b)表面電流分布圖 12
圖3-1-4 TE102模態。(a)電場分布圖、(b)表面電流分布圖 13
圖3-1-5 TE101模態。 (a)電場分布圖、(b)表面電流分布圖 13
圖3-1-6 TE301模態。(a)電場分布圖、(b)表面電流分布圖 14
圖3-1-7 TE102模態。(a)電場分布圖、(b)表面電流分布圖 14
圖3-1-8 半模基板合成波導共振器頻率分布[32]。 15
圖3-1-9 半模三模態基板合成波導共振器結構。 16
圖3-1-10 共振頻率與s關係圖。 16
圖3-2-1 電路配置圖。 18
圖3-2-2 外部品質因數對t的變化。 18
圖3-2-3 電路配置。 19
圖3-2-4 3GHz下之耦合曲線。 20
圖3-2-5 電路配置。(a) 3GHz、(b)3.75 GHz、(c) 4.5 GHz 21
圖3-3-1 三工器耦合拓樸圖。 22
圖3-3-2 三工器電路圖。 22
圖3-3-3 電路實作圖。 23
圖3-3-4 模擬與量測結果比較圖。(a) |S11|, |S21|, |S31|,和|S41|、(b) |S23|, |S24|,和|S34| 24
圖3-3-5電場分布圖。(a) 3GHz、(b)3.75 GHz、(c) 4.5 GHz 26
圖4-1-1 威爾金森分波器。(a)微帶線威爾金森分波器、(b)等效傳輸線模型 28
圖4-1-2 阻抗正規化威爾金森功率分波器。 28
圖4-1-3威爾金森功率分波器半電路架構。(a)偶模輸入、(b)奇模輸入 29
圖4-1-4 省略電阻之威爾金森功率分波器。 30
圖4-2-1 第一級共振器。 31
圖4-2-2 電路配置圖。 32
圖4-2-3 3 GHz下外部品質因數。(a)改變a、(b)改變b 32
圖4-2-4 4.5下外部品質因數。(a) 改變a、(b)改變b 33
圖4-2-5 功率分波器電路配置。(a) 3 GHz、(b) 4.5 GHz 34
圖4-3-1 雙工功率分波器拓樸。 35
圖4-3-2 雙工功率分波器電路圖。 36
圖4-3-3實作電路圖。 36
圖4-3-4 模擬與量測結果比較圖。(a) |S11|、|S21|、|S31|、|S41|和|S51|、(b) |S24|、|S25|、|S34|和|S35| 37
圖4-3-5 3 GHz模擬與量測。(a)振幅差與相位差、(b)通帶內隔離度 38
圖4-3-6 4.5 GHz模擬與量測。(a)振幅差與相位差、(b)通帶內隔離度 38
圖4-3-7 電場分布圖。(a) 3 GHz、(b) 4.5 GHz 40
圖4-4-1 電路配置圖。(a)第一通道、(b)第二和第三通道 42
圖4-5-1 三通帶雙工功率分波器拓樸。 43
圖4-5-2 雙工功率分波器電路圖。 43
圖4-5-3 電路實作圖。 44
圖4-5-4 模擬與量測結果比較圖。(a) |S11|、|S21|、|S31|、|S41|和|S51|、(b) |S24|、|S25|、|S34|和|S35| 45
圖4-5-5 3 GHz模擬與量測。(a)振幅差與相位差、(b)通帶內隔離度 46
圖4-5-6 4.25、4.55 GHz模擬與量測。(a)振幅差與相位差、(b)通帶內隔離度 46
圖4-5-7 零點電場分布圖。 48

表目錄
表3-3-1 三工器尺寸表 23
表3-3-2 模擬與量測比較表 25
表3-3-3 三工器比較表 27
表4-3-1 雙公功率分波器尺寸表 36
表4-3-2 第一通帶模擬與量測比較表 39
表4-3-3 第二通帶模擬與量測比較表 39
表4-5-1 三通帶雙工功率分波器尺寸表 44
表4-5-2 第一通帶模擬與量測比較表 47
表4-5-3第二與第三通帶模擬與量測比較表 47
表4-5-4 功率分波器比較表 48
參考文獻 [1] X. P. Chen and K. Wu, "Substrate integrated waveguide filter: Basic design rules and fundamental structure features", IEEE Microw. Mag., vol. 15, no. 5, pp. 108-116, Jul./Aug. 2014.
[2] S. Sirci, J. D. Martínez, J. Vague and V. E. Boria, "Substrate integrated waveguide diplexer based on circular triplet combline filters," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 7, pp. 430-432, July 2015.
[3] P. Chu, W. Hong, M. Tuo, K. L. Zheng, W. W. Yang, F. Xu, and K. Wu, "Dual-mode substrate integrated waveguide filter with flexible response" IEEE Trans. Microw. Theory Tech., vol. 65, no. 3, pp. 824-830, March 2017.
[4] K. Song, Y. Zhou, Y. Chen, A. Mohamed Iman, S. Richard Patience and Y. Fan, "High-isolation diplexer with high frequency selectivity using substrate integrate waveguide dual-mode resonator," IEEE Access, vol. 7, pp. 116676-116683, 2019.
[5] D. Ma, K. Zhou, T. Huang, Y. Wang and W. Wu, "A novel miniaturized SIW diplexer based on orthogonal dual-mode resonator," IEEE MTT-S Int. Microw. Symp., pp.1-3, 2022.
[6] F. Cheng, X. Lin, K. Song, Y. Jiang and Y. Fan, "Compact diplexer with high isolation using the dual-mode substrate integrated waveguide resonator," IEEE Microw. Theory Tech., vol. 23, no. 9, pp. 459-461.
[7] K. Zhou, C. X. Zhou, and W. Wu, " Compact SIW diplexer with flexibly allocated bandwidths using common dual-mode cavities," IEEE Microw. Wireless Compon. Lett., vol. 28, no. 4, pp. 317-319, 2018.
[8] K. Zhou and K. Wu, "Miniaturized diplexers with large frequency ratios based on common half-mode dual-mode SIW junction-cavities," IEEE Trans. Microw. Theory. Tech., vol. 69, no. 12, pp. 5343-5350, Dec. 2021.
[9] K. Zhou and K. Wu, "Miniaturized diplexer using dual half-mode SIW cavity for 5G sub-6 GHz communications," IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1821–1822, Jul. 2020.
[10] M. Adhikary, P. Chongder and A. Biswas, "Planar miniaturized substrate integrated waveguide triplexer with radial symmetry," Asia-Pacific Microw. Conf. pp. 1-4, 2016.
[11] H. Xie, K. Zhou, C. Zhou and W. Wu, "Compact substrate-integrated waveguide triplexer based on a common triple-mode cavity," IEEE MTT-S Int. pp. 1072-1075, 2018.
[12] L. Xia, H. Xie, B. Wu, J. Chen, S. Sun, and X. Pang, "A miniaturized SIW triplexer based on a triple-mode resonator with slot perturbation," IEEE MTT-S Int. Wireless Symp., pp. 1-4, 2016.
[13] H. W. Xie, K. Zhou, C. X. Zhou and W. Wu, "Stopband-improved SIW triplexer and triple-band filters using alternately cascaded triple- and single-mode cavities," IEEE Access, vol. 7, pp. 56745-56752, 2019.
[14] A. B. Santiko and A. Munir, "Filtering power divider composed of SIW-based bandpass filter for WLAN application," Int. Conf. on Radar, Ant., Microw., Elec., Telecom., pp. 120-123, 2020.,
[15] A. B. Santiko, Edwar and A. Munir, "Development of filtering power divider for WLAN application using SIW bandpass filter," IEEE Asia Pacific Conf. on Wireless and Mobile, pp. 233-237, 2021.
[16] Y. Wang, C. Zhou, K. Zhou and W. Wu, "A compact filtering power divider based on SIW triangular cavities," IEEE Elec. Design of Adv. Packaging Syst. Symp., pp. 1-3, 2017.
[17] U. Rosenberg, M. Salehi, J. Bornemann and E. Mehrshahi, "A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology," IEEE Microw. Wireless Compon. Lett., vol. 23, pp. 406-408, Aug. 2013.
[18] H. W. Qian and Y. H. Pang, "Three-way substrate-integrated waveguide filtering power divider with in-phase and anti-phase outputs," IEEE Asia-Pacific Microw. Conf., pp. 136-138, 2021.
[19] Y. X. Yan, W. Yu and J. X. Chen, "Millimeter-wave low side- and back-lobe SIW filtenna array fed by novel filtering power divider using hybrid TE101/TE301 mode SIW cavities," IEEE Access, vol. 9, pp. 167706-167714, 2021.
[20] X. Wang, X. W. Zhu, L. Tian, P. Liu, W. Hong and A. Zhu, "Design and experiment of filtering power divider based on shielded HMSIW/QMSIW technology for 5G wireless applications," IEEE Access, vol. 7, pp. 72411-72419, 2019.
[21] B. G. Liu, Y. P. Lyu, L. Zhu and C. H. Cheng, "Compact square substrate integrated waveguide filtering power divider with wideband isolation," IEEE Micow. Wireless Compon. Lett., vol. 31, pp. 109-112, Feb. 2021.
[22] C. Hua, W. Wu, M. Liu and Y. Chen, "A novel SIW dual-band filtering divider," Int. Conf. on Microw. and Mmw. Tech., pp. 1-2, 2019.
[23] G. Kumari, R. K. Barik, P. Saxena and S. S. Karthikeyan, "Compact substrate integrated waveguide power divider with slot-loaded ground plane for dual-band applications," IEEE MMT-S Int. Microw. and RF Conf., pp. 1-4, 2018.
[24] J. Zheng et al., "Dual-band filtering power divider based on CSRRs loaded SIW cavity," IEEE Trans. on Circuits. and syst. II:Express. Briefs, vol. 69, pp. 394-398, Feb. 2022.
[25] N. C. Pradhan, K. S. Subramanian, R. K. Barik and Q. S. Cheng, "Design of compact substrate integrated waveguide based triple- and quad-band power dividers," IEEE Microw. Wireless Compon. Lett., vol. 31, pp.365-368, April 2021.
[26] C. F. Chen, K. W. Zhou, R. Y. Chen, Z. C. Wang and Y. H. He, "Design of a microstrip diplexer-integrated filtering power divider," IEEE Access, vol. 7, pp. 106514-106520, 2019.
[27] P. H. Deng, W. Lo, B. L. Chen and C. H. Lin, "Designs of diplexing power dividers," IEEE Access, vol. 6, pp. 3872-3881, 2018.
[28] D. Deslandes and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. on Microw. Theory Tech., vol. 51, pp. 593-596, Feb. 2003.
[29] D. M. Pozar, Microwave engineering. Fourth edition. Hoboken, NJ : Wiley, 2012.
[30] D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., vol. 11, pp. 68-70, 2001.
[31] D. Deslandes and K. Wu, "Integrated transition of coplanar to rectangular waveguides," IEEE MTT-S Int. Microw. Symp. Digest, vol. 2, pp. 619-622, 2001.
[32] F. Zhu, G. Q. Luo, Z. Liao, X. W. Dai and K. Wu, "Compact dual-mode bandpass filters based on half-mode substrate-integrated waveguide cavities," IEEE Microw. Wireless Compon. Lett., vol. 31, pp. 441-444, May 2021.
[33] R. Mongia, I. Bahl, P. Bhartia, and J.-S. Hong, RF and microwave coupled-line circuits. Artech House, 2nd ed., 2007.
[34] D. Hou, W. Hong, L. Tian, J. Liu, and H. Tang, "A planar triplexer based on substrate integrated waveguide technology for TD-SCDMA applications ," Asia Pacific Microw. Conf., pp. 2584-2587, 2009.
[35] A. Corona-Chavez, and T. Itoh, " Novel miniaturized triplexer using substrate integrated technology ," Asia Pacific Microw. Conf., pp. 678-681, 2010.
[36] K. Zhou and K. Wu, "Multichannel substrate integrated waveguide diplexers based on orthogonal dual modes and split-type multiband responses," IEEE Trans. on Microw. Theory Tech., vol. 70, pp. 356-366, Jan. 2022.
[37] G. Macchiarella and S. Tamiazzo, "Design techniques for dual-passband filters," IEEE Trans. on Microw. Theory Tech., vol 53, pp. 3265-3271, Nov. 2005.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2024-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明