博碩士論文 109521020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:13.59.72.129
姓名 羅頡(Lo-Chieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合共軛梯度法與雅可比法之軟性輸出的巨量多輸入多輸出偵測器設計
(A Design of Soft-output MMSE Detector with Joint Conjugate Gradient Jacobi for Massive MIMO Systems)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 近代科技以爆炸性的速度在成長,發展出了如人工智慧(Artificial Intelligence)、5G網路(fifth Generation Mobile Networks)等等,而這些技術的資料傳輸量又更高了一些,多輸入多輸出系統已經漸漸無法負荷,於是又將天線數量向上提升形成了巨量多輸出多輸入系統(Massive MIMO system),常見的天線數有64x8、128x8 (N_r×N_t) 等等,而本論文嘗試以較為困難的128x32的天線數量進行實現,在計算最小均方誤差演算法(Minimum Mean Square Error)時,演算法中的反矩陣複雜度為O(N_t^3),故本論文以共軛梯度雅可必法(Joint Conjugate Gradient Jacobi Method)去逼近MMSE中的反矩陣,此演算法前面以共軛梯度法進行迭代後面以雅可比法進行收尾,因共軛梯度法能提供較好的收斂性,所以以它先搜尋正確的方向,後面再以複雜度較低的雅可比法進行迭代,雅可比法是透過對角矩陣和剩餘矩陣進行迭代的演算法,因Massive MIMO有著對角優勢,雅可比法的迭代也能降低系統的位元錯誤率(Bit Error Rate),所以將兩種演算法結合之後,獲得的位元錯誤率幾乎等同於所要逼近的演算法MMSE。
而在電路架構上為了運算格拉姆矩陣(Gram matrix),將通道矩陣分為四等分並利用格拉姆矩陣的共軛性與對稱性進行平行處理最後相加以獲得更高的吞吐量(throughput),整體的電路架構以管線化(pipeline)進行設計,將其分為三個stage進行運算,晶片時做採用的是TSMC的40nm製程,核心面積為3.72mm^2,操作頻率約423MHz,功耗約為877mW,傳輸量可以達到768Mbps的速度。
摘要(英) Modern technology is growing at an explosive rate, that developed such as AI(artificial intelligence),5G network(fifth Generation Mobile Network),etc. The data throughput of these technologies is a bit higher, MIMO systems have been gradually unable to load. Therefore, the number of antennas is increased to form a Massive MIMO system. Common antenna numbers are 64x8、128x8 and so on. However, this paper tries to implement it with the more difficult number of antennas which is 128x32. When calculating the MMSE (Minimum Mean Square Error), the complexity of the inverse matrix in the algorithm is O(N_t^3). Therefore, this paper uses the Joint Conjugate Gradient Jacobi algorithm to approximate the inverse matrix in MMSE. This algorithm uses conjugate gradient method to iterate before and ends with the Jacobi method. Because the CG method can provide better convergence, so use it to search the correct direction first. Later, iterate with the less complex Jacobi method. The Jacobi method is an iterative algorithm through the diagonal matrix and residual matrix. Because Massive MIMO has diagonal advantage, the iteration of the Jacobi method can also reduce the BER(Bit Error Rate) of the system.
In the circuit architecture, in order to operate the Gram matrix, this paper divides the channel matrix into quarters and use the conjugation and symmetry of the Gram matrix for parallel processing and finally sum to obtain higher throughput. The overall circuit architecture is designed with pipeline and divided into three stages for operation. The chip design is implemented in TSMC 40 nm CMOS technology. The core area is 3.72 mm^2,maximum frequency is 423MHz, dynamic power consumption is 877mW, throughput can achieve 768Mbps.
關鍵字(中) ★ 多輸入多輸出天線系統 關鍵字(英) ★ MIMO system
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 背景 1
1.2 研究動機 2
1.3 論文貢獻 3
第二章 巨量多輸入多輸出天線系統(Massive MIMO System) 4
2.1 巨量多輸入多輸出天線系統介紹 4
2.2 巨量多輸入多輸出天線系統架構 4
2.3 偵測演算法 5
2.3.1 非線性偵測演算法 5
2.3.2 線性偵測演算法 6
2.3.3 最小均方誤差 (Minimum Mean Square Error) 6
2.4 對角優勢矩陣 10
2.5 通道硬化 11
第三章 近似法 12
3.1 最小均方誤差法的優缺點 12
3.2 諾伊曼級數(Neumann) 13
3.3 雅可必法(Jacobi method) 14
3.4 Krylov子空間法(Krylov subspace method) 16
3.4.1 共軛梯度法 (Conjugate Gradient Method) 17
3.4.2 共軛剩餘法(Conjugate Residual) 22
3.5 最深梯度下降雅可比法(Joint Steepest Descent and Jacobi method) 23
3.6 共軛梯度雅可比法(Joint Conjugate Gradient and Jacobi method) 24
第四章 系統模擬 27
4.1 系統架構 27
4.2 迴旋碼編碼器(Convolutional encoder) 28
4.3 維特比解碼器(Viterbi decoder) 29
4.4 對數似然比(Log-likelihood ratio) 30
4.5 訊擾雜比(Signal to Interference plus Noise Ratio) 34
4.6 模擬結果 36
第五章 硬體架構設計 38
5.1 硬體設計流程 38
5.2 硬體電路輸出入介紹 40
5.3 基本電路介紹 41
5.3.1 電路第一級(STAGE1) 42
5.3.1.1 格拉姆矩陣(Gram matrix) 42
5.3.1.2 b處理電路 47
5.3.1.3 CORDIC 倒數電路 48
5.3.1.4 x0 處理電路 52
5.3.1.5 g0 處理電路 53
5.3.1.6 第一級電路總架構 55
5.3.2 電路第二級(stage2) 57
5.3.2.1 p0Ap0 和 g0g0 處理電路 57
5.3.2.2 第二級電路總架構 60
5.3.3 電路第三級(stage3) 62
5.3.3.1 CG和殘差處理電路 62
5.3.3.2 JC處理電路 64
5.3.3.3 第三級電路總架構 67
5.3.4 Memory Block 68
5.4 測試資料記憶體電路 70
5.4.1 測試資料記憶體電路系統 70
5.4.2 測試資料記憶體電路介紹 71
5.4.3 測試資料記憶體 72
5.4.4 測試資料記憶體電路控制 : 輸入H 73
5.4.5 測試資料記憶體電路時序 : 輸入H 76
5.4.6 測試資料記憶體電路控制 : 輸入y 77
5.4.7 測試資料記憶體電路時序 : 輸入y 79
5.4.8 測試資料記憶體電路合成結果 79
5.4.9 加入測試資料記憶體電路後的電路輸出入腳位 80
5.5 定點數模擬分析 80
5.6 模擬驗證 81
第六章 晶片設計結果 83
6.1 錯誤覆蓋率 84
6.2 布局圖 85
6.3 核心電路分布圖 87
6.4 核心電路面積功耗分布 89
6.5 晶片規格 91
第七章 結論與未來展望 95
第八章 參考文獻 96
參考文獻 [1] Md. Yeakub Ali, Tamanna Hossain; Md. Munjure Mowla, ”A Trade-off between Energy and Spectral Efficiency in Massive MIMO 5G System,” 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), December 2019.
[2] Fredrik Rusek, Daniel Persson, Buon Kiong Lau, Erik G. Larsson,Thomas L. Marzetta, Ove Edfors, and Fredrik Tufvesson, ”Scaling Up MIMO,” IEEE signal processing magazine, January 2013.
[3] Sidharth Mohanty, Arun Agarwal, Sabita Mali, Gourav Misra, Kabita Agarwal, ”Design and BER Performance Analysis of MIMO and Massive MIMO Networks under Perfect and Imperfect CSI,” IEEE 2020 Fourth International Conference on I-SMAC, October 2020.
[4] Robin Chataut, Robert Akl, ”Efficient and Low-Complexity Iterative Detectors for 5G Massive MIMO Systems,” IEEE 16th International Conference on Distributed Computing in Sensor System, 2020.
[5] Christoph Studer, Schekeb Fateh, Dominik Seethaler, ”ASIC Implementation of Soft-Input Soft-Output MIMO Detection Using MMSE Parallel Interference Cancellation,” IEEE Journal of Solid-State Circuits, VOL. 46, NO. 7, July 2011.
[6] Hartung-Gorre Verlag Konstanz, ”Iterative MIMO Decoding Algorithms and VLSI Implementation Aspects,” pp.220-224, 2009.
[7] Mahmoud A. Albreem, Mohammed H. Alsharif, Sunghwan Kim, ”A Robust Hybrid Iterative Linear Detector for Massive MIMO Uplink Systems,” Symmetry, vol. 12, pp. 1–12, February 2020.
[8] Sara Gunnarsson, Jose Flordelis, Liesbet Van der Perre, Fredrik Tufvesson, ”Channel Hardening in Massive MIMO-A Measurement Based Analysis,” IEEE 19th International Workshop on SPAWC, June 2018.
[9] Mahmoud A. M. Albreem, ”Approximate Matrix Inversion Methods for Massive MIMO Detectors,” IEEE 23rd International Symposium on Consumer Technologies (ISCT), June 2019.
[10] Michael Wu, Bei Yin, Guohui Wang, Chris Dick, Joseph R. Cavallaro, and Christoph Studer, ”Large-Scale MIMO Detection for 3GPP LTE : Algorithms and FPGA Implementations,” IEEE Journal of Selected Topics in Signal Processing, March 2014
[11] Byunggi Kang, Ji-Hwan Yoon, Jongsun Park,” Low Complexity Massive MIMO Detection Architecture based on Neumann Method,”IEEE International Soc Design Conference, November 2015.
[12] Juan Minango, Celso de Almeida, Carlos Daniel Altamirano, ”Low-Complexity MMSE Detector for Massive MIMO Systems Based on Damped Jacobi Method,” IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), October 2017.
[13] Magnus R.Hestenes, Eduard Stiefel, “Method of Conjugate Gradient for Solving Linear Systems,” Journal of Research of the National Bureau of Standards, December 1952.
[14] Bei Yin,Micheal Wu,Joseph R. Cavallaro,Christoph Studer, ”Conjugate Gradient-based Soft-Output Detection and Precoding in Massive MIMO Systems,” IEEE Globecom 2014 – Wireless Communications Symposium, December 2014.
[15] Yufeng Yang , Ye Xue , Xiaohu You, Chuan Zhang, ”An Efficient Conjugate Residual Detector for Massive MIMO Systems,” IEEE International Worksjop on Signal Processing Systems, October 2017.
[16] Xiaobo Qin, Zhiting Yan, Guanghui He, ”A Near-Optimal Detection Scheme Based on Joint Steepest Descent and Jacobi
Method for Uplink Massive MIMO Systems,” IEEE Communications Letters, December 2015.
[17] Wei Song, Xiang Chen, Liangliang Wang, Xuming Lu, ”Joint Conjugate Gradient and Jacobi Iteration Based Low Complexity Precoding for Massive MIMO Systems” IEEE/CIC International Conference on Communications in China, July 2016.

[18] Bruce Moision, ”A Truncation Depth Rule of Thumb for Convolutional Codes,” Information Theory and Applications Workshop, February 2008.
[19] Vanessa B. Olivatto, Renato R. Lopes, and Eduardo R. de Lima, ”Simplified Method for Log-Likelihood Ratio Approximation in High-Order Modulations Based on the Voronoi Decomposition,” IEEE Transactions on Broadcasting, May 2017.
[20] Fan Jiang and Cheng Li and Zijun Gong, ”A Low Complexity Soft-output Data Detection Scheme Based on Jacobi Method for Massive MIMO Uplink Transmission,” IEEE International Conference on Communications, July 2017.
[21] Meixiang Zhang, Sooyoung Kim, ”Evaluation of MMSE-Based Iterative Soft Detection Schemes for Coded Massive MIMO System,” IEEE Access, December 2018.
[22] Jiaming Tu, Mengdan Lou , Jianfei Jiang , Dewu Shu ,Guanghui He, ”An Efficient Massive MIMO Detector Based on Second-Order Richardson Iteration: From Algorithm to Flexible Architecture,” IEEE Transactions on Circuits and Systems I: Regular Papers, July 2020.
[23] Leibo Liu, Guiqiang Peng, PanWang, Sheng Zhou, Qiushi Wei, Shouyi Yin, Shaojun Wei, ”Energy- and Area-Efficient
Recursive-Conjugate-Gradient-Based MMSE Detector for Massive MIMO Systems,” IEEE Transactions on Signal Processing, January 2020.
[24] Xiaosi Tan, Huijun Han, Muhao Li, Kai Sun, Yongming Huang, Xiaohu You, Chuan Zhang,”Approximate Expectation Propagation Massive MIMO Detector With Weighted Neumann-Series,”IEEE Transactions on Circuits and Systems II: Express Briefs, August 2020
[25] Xiaosi Tan, Weihong Xu, Yaping Zhang, Zaichen Zhang, Xiaohu You, Chuan Zhang,”Efficient Expectation Propagation Massive MIMO Detector With Neumann-Series Approximation,”IEEE Transactions on Circuits and Systems II: Express Briefs, December 2019
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2024-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明