參考文獻 |
[1] “Record wind and solar - but also record coal and emissions,” https://ember-climate.org/insights/research/global-electricity-review-2022/
[2] 〈COP26系列十三:高碳排產業如何衝刺淨零?綠色氫能將是重要解方〉,取自https://www.delta-foundation.org.tw/blogdetail/3213.
[3] 〈以氫燃料電池實現能源循環,促進我國淨零排放願景實現〉,取自https://trh.gase.most.ntnu.edu.tw/tw/article/content/263.
[4] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[5] Y. F. Zhai, H. M. Zhang, Y. Zhang, and D. M. Xing, “A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells,” Journal of Power Sources, Vol 169, pp. 259-264, 2007.
[6] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, Vol 226, pp. 169-184, 2003.
[7] L. A. Zook, and J. Leddy, “Density and solubility of nafion: Recast, annealed, and commercial films,” Analytical Chemistry, Vol 68, pp. 3793-3796, 1996.
[8] H. Y. Jung, and J. W. Kim, “Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC),” International Journal of Hydrogen Energy, Vol 37, pp. 12580-12585, 2012.
[9] R. B. Sandor, “PBI (Polybenzimidazole): Synthesis, Properties and Applications,” High Performance Polymers, Vol 2, pp. 25-37, 1990.
[10] P. Staiti, M. Minutoli, and S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, Vol 90, pp. 231-235, 2000.
[11] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, Journal of Power Sources, Vol 195, pp. 756-761, 2010.
[12] “Toray Engineering Co., Ltd.,” http://www.toray eng.com/lcd/coater/lineup/esc.html
[13] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, Journal of The Electrochemical Society, Vol 151, pp. 1733-1737, 2004.
[14] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, Journal of Physics D: Applied Physics, Vol 47, pp. 272001, 2014.
[15] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim Acta, Vol 146, pp. 171-177, 2014.
[16] M. S. Saha, A. F. Gull´, R. J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim Acta, Vol 51, pp. 4680-4692, 2006.
[17] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim Acta, Vol 177, pp. 168-173, 2015.
[18] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol 6, pp. 180, 2016.
[19] 陳晧軒:〈以滴塗製程控制Nafion自組織成膜並提升質子傳導與燃料電池功率密度〉,碩士論文,國立中央大學,中華民國一百一十年六月。
[20] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, Vol 273, pp. 885-893, 2015.
[21] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, Journal of Power Sources, Vol 271, pp. 401-405, 2014.
[22] R. Haider, Y. C. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. X. Yuan, S. Q. Song, and J. J. Zhang, “High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies,” Chemical Society Reviews, Vol 50, 2021, pp. 1138-1187.
[23] L. C. Xia, M. Ni, Y. W. Dai, K. Q. Zheng, and M. X. Li, “Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell,” International Journal of Energy Research, Vol 46, pp.1998-2010, 2022.
[24] T. Myles, L. Bonville, and R. Maric, “Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells,” Catalysts, Vol 7, pp. 16, 2017.
[25] Z. Zhou, O. Zholobko, X. F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, Vol 14, pp. 135, 2021.
[26] M. G. Waller, et al., “Performance of high temperature PEM fuel cell materials. Part 1: effects of temperature, pressure and anode dilution,” International Journal of Hydrogen Energy, Vol 41, pp. 2944-2954, 2016.
[27] C. Zhang, et al., “Investigation of water transport and its effect on performance of high temperature PEM fuel cells,” Electrochimica Acta, Vol 149, pp. 271-277, 2014.
[28] S. Galbiati, et al., “Experimental study of water transport in a polybenzimidazole based high temperature PEMFC,” International Journal of Hydrogen Energy, Vol 37, pp. 2462-2469, 2012.
[29] Z. Qi, S. Buelte, “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells,” Journal of Power Sources, Vol 161, pp. 1126-1132, 2006.
[30] Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, "High Temperature Polymer Electrolyte Membrane Fuel Cells : Approaches, Status, and Perspectives," Springer International Publishing, Springer, 2016.
[31] Z. Zhou, O. Zholobko, X.-F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, Vol 14, pp. 135, 2021.
[32] R. Zeis, “Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells,” Beilstein Journal of Nanotechnology, Vol 6, pp. 68-83, 2015.
[33] J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles - a new polymer electrolyte,” Journal of the Electrochemical Society, Vol 142, pp. L121-L123, 1995.
[34] Hydrogen and Fuel Cell Technology Office, “DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components,” https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.
[35] S. Martin, J. O. Jensen, Q. Li, P. L. Garcia-Ybarra, and J. L. Castillo, “Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane,” International Journal of Hydrogen Energy, Vol 44, pp. 28273-28282, 2019.
[36] S. Martin, Q. Li, and J. O. Jensen, “Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes,” Journal of Power Sources, Vol 293, pp. 51-56, 2015.
[37] H. Y. Du, C. H. Wang, C. S. Yang, H. C. Hsu, S. T. Chang, H. C. Huang, S. W. Lai, J. C. Chen, T. L. Yu, L. C. Chen, and K. H. Chen, “A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells,” Journal of Materials Chemistry A, Vol 2, pp. 7015-7019, 2014.
[38] J. J. Zhang, H. J. Bai, W. R. Yan, J. Zhang, H. N. Wang, Y. Xiang, and S. F. Lu, “Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers,” Journal of the Electrochemical Society, Vol 167, pp. 114501, 2020.
[39] L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, “High-temperature polybenzimidazole fuel cell membranes via a sol-gel process,” Chemistry of Materials, Vol 17, pp. 5328-5333, 2005.
[40] X. Deng, C. Huang, X. Pei, B. Hu, and W. Zhou, “Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review,” International Journal of Hydrogen Energy, Vol 47, pp. 1529-1542, 2021.
[41] J. Huang, Z. Li, and J. B. Zhang, “Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer,” Frontiers in Energy, Vol 11, pp. 334-364, 2017.
[42] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, and C. J. Tseng, “Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel cells with pulsed laser deposition,” Journal of Physics D-Applied Physics, Vol 49, pp. 7, 2016.
[43] C. C. Lang, C. H. Lin, H. H. Chen, C. J. Tseng, and S. Y. Chen, “Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing,” International Journal of Hydrogen Energy, Vol 46, pp. 33948-33956, 2021.
[44] J. Iglesia, C.-C. Lang, Y.-M. Chen, S.-y. Chen, and C.-J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer,” Journal of Power Sources, Vol 436, pp. 226886, 2019.
[45] Fang Luo, Shuyuan Pan, Zehui Yang, “Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells,” Acta Phys. -Chim. Sin, Vol 37, 9, pp. 2009087, 2021.
[46] H.Y. Tang, K. Geng, D. Aili, Q. Jin, J. Pan, G. Chao, X. Yin, X. Guo, Q.F. Li, N. Li, “Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders,” nature communications, Vol 13, 7577, 2022.
[47] Yagmur Özdemir, Necati Özkan,Yılser Devrim, “Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells,” Electrochimica Acta, Vol 245, pp. 1-13, 2017.
[48] N. Bevilacqua, M.G. George, S. Galbiati, A. Bazylak, R. Zeis, “Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers,” Electrochimica Acta, Vol 257, pp. 89-98, 2017.
[49] F. Arslan, T. Böhm, J. Kerres, S. Thiele, “Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid, ” Journal of Membrane Science, Vol 625, pp. 119145, 2021.
[50] H. Becker, L. N. Cleemann, D. Aili, J. O. Jensen, Q. Li, “Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes,” Electrochemistry communications, Vol 82, pp. 21-24, 2017. |