博碩士論文 110521085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.118.1.173
姓名 王晨宇(Chen-Yu Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於DeepMedic在磁振造影上自動分割量化聽神經瘤及其接受放射手術後引起之腦水腫
(Using DeepMedic in Automatic Segmentation and Quantification on Magnetic Resonance Imaging of Acoustic Neuromas and Perilesional Brain Edema after Radiosurgery)
相關論文
★ 基於YOLOv4在超音波影像中的甲狀腺腫瘤識別與偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-1以後開放)
摘要(中) 聽神經瘤、腦膜瘤和轉移性腦瘤是常見的腦部腫瘤。聽神經瘤和腦膜瘤常見的治療方式為加馬刀放射治療,但是術後容易產生水腫,而轉移性腦瘤容易導致腦部產生水腫,因此水腫的觀察也是很重要的事情。目前針對腫瘤以及水腫都是透過醫師肉眼判斷,但這種判定方式不僅耗時且存在醫師主觀上判定所產生的誤差,目前沒有客觀且準確的工具來進行辨識,所以不利於水腫消長過程、量化嚴重程度和病例差異性的研究。
我們的研究是利用深度學習針對聽神經瘤的腫瘤和水腫以及腦膜瘤和轉移性腦瘤的水腫進行分割和量化。聽神經瘤腫瘤的部分,我們使用的是T1-weighted post-contrast- enhancement (T1C)權重影像,且利用DeepMedic進行腫瘤的分割和量化。聽神經瘤、轉移性腦瘤和腦膜瘤的水腫部分,我們使用的是T2權重影像(T2-weighted image),先利用Mask R-CNN (Region Convolutional Neural Network)將腦遮罩提取出來,再利用DeepMedic進行水腫的分割及量化。
聽神經瘤腫瘤的部分,資料集是44位病患,44筆資料,在經過五折交叉驗證後,我們的模型取得了平均Dice係數 91.9 %。腦遮罩提取的部分,資料集是60位病患,60筆資料,在經過五折交叉驗證後,我們的模型取得了平均Dice係數 94.3 %。水腫的部分,聽神經瘤水腫資料集是10位病患,44筆資料,在經過五折交叉驗證後,聽神經瘤水腫平均Dice係數為55.2%;轉移性腦瘤水腫資料集是33位病患,66筆資料,在經過五折交叉驗證後,轉移性腦瘤水腫平均Dice係數為83.6%;腦膜瘤水腫資料集是20位病患,130筆資料,在經過五折交叉驗證後,腦膜瘤水腫平均Dice係數為76.8%。我們也開發了圖形使用者介面,使醫師能在臨床上方便使用。
這個研究可以實現自動化分割及量化聽神經瘤腫瘤及其水腫,以及腦膜瘤和轉移性腦瘤的水腫,幫助醫師判斷水腫消長過程、量化嚴重程度和病例差異性的研究,使醫師在決定治療方向時有更準確及客觀的數據提供參考,進而增進醫師的診斷效率以及準確率。最後也有開發圖形使用者介面,使醫師方便操作。
摘要(英) Acoustic neuroma, meningiomas, and metastatic brain tumors are prevalent brain tumors. Gamma knife radiation therapy is a common treatment for neuromas and meningiomas, but postoperative edema is a usual complication. Metastatic brain tumors often lead to brain edema, making the observation of edema crucial. Currently, tumor and edema assessment rely on visual inspection by physicians, which is time-consuming and subject to subjective errors.
This research focused on deep learning for the segmentation and quantification of tumors and edema associated with acoustic neuroma as well as the segmentation and quantification of edema associated with meningiomas and metastatic brain tumors. The tumor segmentation of acoustic neuroma was conducted on T1-weighted post-contrast- enhancement (T1C) images using DeepMedic. The edema segmentation of acoustic neuroma, metastatic brain tumors, and meningiomas was conducted on T2-weighted images by first extracting the brain mask using Mask R-CNN and then applying DeepMedic for edema segmentation and quantification.
For the auditory nerve tumor segment, our dataset comprised 44 patients with 44 data points. After undergoing five-fold cross-validation, our model achieved an average Dice coefficient of 91.9%. Regarding the brain mask extraction, our dataset consisted of 60 patients with 60 data points. After five-fold cross-validation, our model achieved an average Dice coefficient of 94.3%. Concerning the edema segment, the auditory nerve tumor edema dataset included 10 patients with 44 data points. After five-fold cross-validation, the average Dice coefficient for auditory nerve tumor edema was 55.2%. For metastatic brain tumor edema, with a dataset of 33 patients and 66 data points, the average Dice coefficient after five-fold cross-validation was 83.6%. Lastly, for meningioma edema, with a dataset of 20 patients and 130 data points, the average Dice coefficient after five-fold cross-validation was 76.8%. We have also developed a graphical user interface to facilitate easy clinical use by physicians.
This study enables the automated segmentation and quantification of auditory nerve tumor and its edema, as well as edema associated with meningioma and metastatic brain tumors. It aids physicians in assessing the progression, quantifying severity, and studying case variations in edema. The research provides more accurate and objective data for physicians to reference when determining treatment directions, ultimately enhancing diagnostic efficiency and accuracy. Additionally, a graphical user interface has been developed to facilitate convenient operation for physicians.
關鍵字(中) ★ 聽神經瘤
★ 腦膜瘤
★ 轉移性腦瘤
★ 深度學習
★ 自動化分割
★ 圖形使用者介面
關鍵字(英) ★ Acoustic Neuroma
★ Meningioma
★ Metastatic Brain Tumor
★ Deep Learning
★ Automated Segmentation
★ Graphical User Interface
論文目次 摘要 v
Abstract vii
目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 聽神經瘤及其引起腦水腫 2
1.3 轉移性腦瘤及其引起腦水腫 3
1.4 腦膜瘤及其引起腦水腫 4
1.5 相關研究 4
第二章 研究方法 6
2.1 資料集 7
2.2 磁振造影 12
2.3 影像前處理 14
2.3.1 影像對位 14
2.3.2 提取腦遮罩 15
2.3.3 影像重採樣 21
2.3.3 影像標準化 25
2.3.4 資料增量 27
2.4 分割腫瘤與水腫模型 29
2.5 交叉驗證 30
2.6 評估指標 31
第三章 研究結果 34
3.1 對位結果 34
3.2 腦遮罩提取結果 35
3.3 聽神經瘤分割結果 38
3.4 聽神經瘤水腫分割結果 40
3.5 轉移性腦瘤水腫分割結果 43
3.6 腦膜瘤水腫分割結果 46
第四章 討論 50
4.1 排除之數據集 50
4.2 分割聽神經瘤不使用腦遮罩原因探討 51
4.3 聽神經瘤分割之結果比較 51
4.4水腫分割之結果比較 52
4.5 研究價值 54
第五章 結論 56
參考文獻 57
附錄 65
參考文獻 [1] C. Marosi, Marco Hassler, Karl Roessler, Michele Reni, Milena Sant, Elena Mazza and Charles Vecht. , "Meningioma," Crit Rev Oncol Hematol, vol. 67, no. 2, pp. 153-71, Aug 2008, doi: 10.1016/j.critrevonc.2008.01.010.
[2] St Martin MB and Hirsch BE., "Imaging of hearing loss, " Otolaryngol Clin North Am, vol. 41, no. 1, pp. 157-178, Feb 2008, doi: 10.1016/j.otc.2007.10.007.
[3] Singh K, Singh MP, Thukral C, Rao K, Singh K and Singh A., "Role of magnetic resonance imaging in evaluation of cerebellopontine angle schwannomas, " Indian J Otolaryngol Head Neck Surg, vol. 67, no. 1, pp. 21-27, 2015, doi:10.1007/s12070-014-0736-0
[4] Nikolopoulos TP, Fortnum H, O′Donoghue G and Baguley D, "Acoustic neuroma growth: a systematic review of the evidence, " Otol Neurotol, vol. 31, no. 3, pp. 478-485, 2010, doi:10.1097/MAO.0b013e3181d279a3
[5] Matthies C and Samii M, "Management of 1000 vestibular schwannomas (acoustic neuromas): clinical presentation, " Neurosurgery, vol. 40, no. 1, pp. 1–9, 1997, doi:https://doi.org/10.1097/00006123-199701000-00001(discussion-10).
[6] E. Kentala and I. Pyykkö, "Clinical picture of vestibular schwannoma," (in eng), Auris Nasus Larynx, vol. 28, no. 1, pp. 15-22, Jan 2001, doi: 10.1016/s0385-8146(00)00093-6.
[7] Doyle KJ, "Is there still a role for auditory brainstem response audiometry in the diagnosis of acoustic neuroma?, " Arch Otolaryngol Head Neck Surg, vol. 125, no. 2, pp. 232-234, 1999, doi:10.1001/archotol.125.2.232.
[8] House JW, Waluch V and Jackler RK, "Magnetic resonance imaging in acoustic neuroma diagnosis, " Ann Otol Rhinol Laryngol, vol. 95, no. 1, pp. 16-20, 1986, doi:10.1177/000348948609500104.
[9] Kondziolka D, Lunsford LD, McLaughlin MR and Flickinger JC, "Long-term outcomes after radiosurgery for acoustic neuromas, " N Engl J Med, vol. 339, no. 20, pp. 1426-1433, 1998, doi:10.1056/NEJM199811123392003.
[10] A. Niranjan, L. D. Lunsford, and M. S. Ahluwalia, "Targeted Therapies for Brain Metastases," (in eng), Prog Neurol Surg, vol. 34, pp. 125-137, 2019, doi: 10.1159/000493057.
[11] N. Fravi, "[Brain edema]," (in ger), Ther Umsch, vol. 61, no. 11, pp.679-86, Nov 2004, doi: 10.1024/0040-5930.61.11.679.
[12] P. Roth, L. Regli, M. Tonder, and M. Weller, "Tumor-associated edema in brain cancer patients: pathogenesis and management," (in eng), Expert Rev Anticancer Ther, vol. 13, no. 11, pp. 1319-25, Nov 2013, doi: 10.1586/14737140.2013.852473.
[13] Huang G. Y. and Wu Y. J, "Progress in Wnt/β-catenin signaling pathway and meningioma, " Medical Innovation of China, vol. 10, no. 33, pp. 162–164, 2013.
[14] H. S. Abdulbaqi, M. Zubir Mat, A. F. Omar, I. S. Bin Mustafa and L. K. Abood, "Detecting brain tumor in Magnetic Resonance Images using Hidden Markov Random Fields and Threshold techniques," 2014 IEEE Student Conference on Research and Development, Penang, Malaysia, 2014, pp. 1-5, doi: 10.1109/SCORED.2014.7072963.
[15] M. I. Razzak, M. Imran and G. Xu, "Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks," IEEE journal of biomedical and health informatics, vol. 23, no. 5, pp. 1911-1919, 2018, doi: 10.1109/JBHI.2018.2874033.
[16] S. Loncaric, D. Kovacevic and D. Cosic, "Fuzzy expert system for edema segmentation," MELECON ′98. 9th Mediterranean Electrotechnical Conference. Proceedings (Cat. No.98CH36056), Tel-Aviv, Israel, vol. 2, pp. 1476-1479, 1998, doi: 10.1109/MELCON.1998.699485.
[17] A. Chaudhari and J. Kulkarni, "Cerebral edema segmentation using textural feature," Biocybernetics and Biomedical Engineering, vol. 39, no. 3, pp. 599-612, 2019, doi: https://doi.org/10.1016/j.bbe.2019.06.002.
[18] I. Njeh, Lamia Sallemi, Ismail Ben Ayed, Khalil Chtourou, Stephane Lehericy, Damien Galanaud and Ahmed Ben Hamida., "3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach," (in eng),Comput Med Imaging Graph, vol. 40, pp. 108-19, Mar 2015, doi:10.1016/j.compmedimag.2014.10.009.
[19] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322.
[20] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.
[21] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
[22] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 10.1109
[23] D. Han, "Comparison of Commonly Used Image InterpolationMethods," March 2013, doi : 10.2991/iccsee.2013.391.
[24] T. M. Lehmann, C. Gonner and K. Spitzer, "Addendum: B-spline interpolation in medical image processing," in IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 660-665, July 2001, doi: 10.1109/42.932749.
[25] R. Szeliski and J.Coughlan, "Spline-Based Image Registration. " in International Journal of Computer Vision 22, pp. 199–218, 1997, doi: https://doi.org/10.1023/A:1007996332012
[26] T. M. Lehmann, C. Gonner and K. Spitzer, "Survey: interpolation methods in medical image processing," in IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1049-1075, Nov. 1999, doi: 10.1109/42.816070.
[27] C. Shorten and T.M. Khoshgoftaar, "A survey on Image Data Augmentation for Deep Learning," J Big Data, vol 6, pp. 60, 2019.doi : https://doi.org/10.1186/s40537-019-0197-0
[28] K. Kamnitsas, , Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert and Ben Glocker., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017, doi: https://doi.org/10.1016/j.media.2016.10.004 .
[29] Jonathan Shapey, Guotai Wang, Reuben Dorent, Alexis Dimitriadis, Wenqi Li, Ian Paddick, Neil Kitchen, Sotirios Bisdas, Shakeel R Saeed, Sebastien Ourselin, Robert Bradford and Tom Vercauteren., "An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI," J Neurosurg, vol. 134, no. 1, pp. 171-179, Dec 6 2019, doi: 10.3171/2019.9.JNS191949.
[30] Hesheng Wang, Tanxia Qu, Kenneth Bernstein, David Barbee and Douglas Kondziolka., "Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network," Radiat Oncol, vol. 18, no. 78, 2023, doi: https://doi.org/10.1186/s13014-023-02263-y.
[31] M. Kattau, B. Glocker and D. Darambara, "A Comparative Analysis of Two Deep Learning Architectures for the Automatic Segmentation of Vestibular Schwannoma," 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Piscataway, NJ, USA, 2021, pp. 1-3, doi: 10.1109/NSS/MIC44867.2021.9875733.
[32] Cheng-chia Lee, Wei-Kai Lee, Chih-Chun Wu, Chia-Feng Lu, Huai-Che Yang, Yu-Wei Chen, Wen-Yuh Chung, Yong-Sin Hu, Hsiu-Mei Wu, Yu-Te Wu and Wan-Yuo Guo., "Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery," Scientific Reports, vol. 11, no. 1, pp. 3106, 2021, doi: https://doi.org/10.1038/s41598-021-82665-8.
[33] Guotai Wang, Jonathan Shapey, Wenqi Li, Reuben Dorent, Alex Demitriadis, Sotirios Bisdas, Ian Paddick, Robert Bradford, Sebastien Ourselin and Tom Vercauteren., "Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss," Cham, 2019: Springer International Publishing, in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, pp. 264-272.
[34] 張博堯。「轉移性腦瘤及其引起腦水腫辨識量化」。碩士論文,國立中央大學電機工程學系,2023。https://hdl.handle.net/11296/badyn6。
[35] Natasha Ironside, Ching-Jen Chen, Simukayi Mutasa, Justin L Sim, Dale Ding, Saurabh Marfatiah, David Roh, Sugoto Mukherjee, Karen C Johnston, Andrew M Southerland, Stephan A Mayer, Angela Lignelli and Edward Sander Connolly., "Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage," (in eng), Stroke, vol. 51, no. 3, pp. 815-823, Mar 2020, doi: 10.1161/strokeaha.119.026764.
[36] 陳至宏。「深度學習於自動分割腦膜瘤放射手術後之水腫區域」。碩士論文,國立中央大學電機工程學系,2022。https://hdl.handle.net/11296/6tfc9m。
[37] A. Demirhan, M. Toru, and I. Guler, "Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks," (in eng), IEEE J Biomed Health Inform, vol. 19, no. 4, pp. 1451-8, Jul 2015, doi: 10.1109/jbhi.2014.2360515.
[38] Yasheng Chen, Rajat Dhar, Laura Heitsch, Andria Ford, Israel Fernandez-Cadenas, Caty Carrera, Joan Montaner, Weili Lin, Dinggang Shen, Hongyu An and Jin-Moo Lee., "Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs," NeuroImage: Clinical, vol. 12, pp. 673-680, 2016, doi: 10.1016/j.nicl.2016.09.018.
[39] Xianjing Zhao, Kaixing Chen, Ge Wu, Guyue Zhang, Xin Zhou, Chuanfeng Lv, Shiman Wu, Yun Chen, Guotong Xie and Zhenwei Yao., "Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema," European Radiology, vol. 31, no. 7, pp. 5012-5020, 2021, doi: 10.1007/s00330-020-07558-2.
[40] Yong En Kok, Stefan Pszczolkowski, Zhe Kang Law, Azlinawati Ali, Kailash Krishnan, Philip M. Bath, Nikola Sprigg, Robert A. Dineen and Andrew P. French., "Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning," Radiology: Artificial Intelligence, vol. 4, no. 6, p. e220096, 2022, doi: 10.1148/ryai.220096.
[41] S. Reza and K. M. Iftekharuddin, "Multi-fractal texture features for brain tumor and edema segmentation," in Medical Imaging 2014: Computer-Aided Diagnosis, vol. 9035: SPIE, pp. 11-20, 2014, doi: 10.1117/12.2044264.
[42] Lucas A. Ramos, Dyantha G. van der Sluijs, Irem M. Baharoglu, Yvo B. Roos, Charles B. Majoie, Ludo F. Beenen, Renan S. de Barros, Silvia D. Olabarriaga and Henk A. Marquering., "Convolutional Neural Networks For Automated Edema Segmentation in Patients With Intracerebral Hemorrhage," Medical Imaging with Deep Learning , 2018.
指導教授 蔡章仁 彭徐鈞(Jang-Zern Tsai Syu-Jyun Peng) 審核日期 2024-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明