參考文獻 |
[1] C. Marosi, Marco Hassler, Karl Roessler, Michele Reni, Milena Sant, Elena Mazza and Charles Vecht. , "Meningioma," Crit Rev Oncol Hematol, vol. 67, no. 2, pp. 153-71, Aug 2008, doi: 10.1016/j.critrevonc.2008.01.010.
[2] St Martin MB and Hirsch BE., "Imaging of hearing loss, " Otolaryngol Clin North Am, vol. 41, no. 1, pp. 157-178, Feb 2008, doi: 10.1016/j.otc.2007.10.007.
[3] Singh K, Singh MP, Thukral C, Rao K, Singh K and Singh A., "Role of magnetic resonance imaging in evaluation of cerebellopontine angle schwannomas, " Indian J Otolaryngol Head Neck Surg, vol. 67, no. 1, pp. 21-27, 2015, doi:10.1007/s12070-014-0736-0
[4] Nikolopoulos TP, Fortnum H, O′Donoghue G and Baguley D, "Acoustic neuroma growth: a systematic review of the evidence, " Otol Neurotol, vol. 31, no. 3, pp. 478-485, 2010, doi:10.1097/MAO.0b013e3181d279a3
[5] Matthies C and Samii M, "Management of 1000 vestibular schwannomas (acoustic neuromas): clinical presentation, " Neurosurgery, vol. 40, no. 1, pp. 1–9, 1997, doi:https://doi.org/10.1097/00006123-199701000-00001(discussion-10).
[6] E. Kentala and I. Pyykkö, "Clinical picture of vestibular schwannoma," (in eng), Auris Nasus Larynx, vol. 28, no. 1, pp. 15-22, Jan 2001, doi: 10.1016/s0385-8146(00)00093-6.
[7] Doyle KJ, "Is there still a role for auditory brainstem response audiometry in the diagnosis of acoustic neuroma?, " Arch Otolaryngol Head Neck Surg, vol. 125, no. 2, pp. 232-234, 1999, doi:10.1001/archotol.125.2.232.
[8] House JW, Waluch V and Jackler RK, "Magnetic resonance imaging in acoustic neuroma diagnosis, " Ann Otol Rhinol Laryngol, vol. 95, no. 1, pp. 16-20, 1986, doi:10.1177/000348948609500104.
[9] Kondziolka D, Lunsford LD, McLaughlin MR and Flickinger JC, "Long-term outcomes after radiosurgery for acoustic neuromas, " N Engl J Med, vol. 339, no. 20, pp. 1426-1433, 1998, doi:10.1056/NEJM199811123392003.
[10] A. Niranjan, L. D. Lunsford, and M. S. Ahluwalia, "Targeted Therapies for Brain Metastases," (in eng), Prog Neurol Surg, vol. 34, pp. 125-137, 2019, doi: 10.1159/000493057.
[11] N. Fravi, "[Brain edema]," (in ger), Ther Umsch, vol. 61, no. 11, pp.679-86, Nov 2004, doi: 10.1024/0040-5930.61.11.679.
[12] P. Roth, L. Regli, M. Tonder, and M. Weller, "Tumor-associated edema in brain cancer patients: pathogenesis and management," (in eng), Expert Rev Anticancer Ther, vol. 13, no. 11, pp. 1319-25, Nov 2013, doi: 10.1586/14737140.2013.852473.
[13] Huang G. Y. and Wu Y. J, "Progress in Wnt/β-catenin signaling pathway and meningioma, " Medical Innovation of China, vol. 10, no. 33, pp. 162–164, 2013.
[14] H. S. Abdulbaqi, M. Zubir Mat, A. F. Omar, I. S. Bin Mustafa and L. K. Abood, "Detecting brain tumor in Magnetic Resonance Images using Hidden Markov Random Fields and Threshold techniques," 2014 IEEE Student Conference on Research and Development, Penang, Malaysia, 2014, pp. 1-5, doi: 10.1109/SCORED.2014.7072963.
[15] M. I. Razzak, M. Imran and G. Xu, "Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks," IEEE journal of biomedical and health informatics, vol. 23, no. 5, pp. 1911-1919, 2018, doi: 10.1109/JBHI.2018.2874033.
[16] S. Loncaric, D. Kovacevic and D. Cosic, "Fuzzy expert system for edema segmentation," MELECON ′98. 9th Mediterranean Electrotechnical Conference. Proceedings (Cat. No.98CH36056), Tel-Aviv, Israel, vol. 2, pp. 1476-1479, 1998, doi: 10.1109/MELCON.1998.699485.
[17] A. Chaudhari and J. Kulkarni, "Cerebral edema segmentation using textural feature," Biocybernetics and Biomedical Engineering, vol. 39, no. 3, pp. 599-612, 2019, doi: https://doi.org/10.1016/j.bbe.2019.06.002.
[18] I. Njeh, Lamia Sallemi, Ismail Ben Ayed, Khalil Chtourou, Stephane Lehericy, Damien Galanaud and Ahmed Ben Hamida., "3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach," (in eng),Comput Med Imaging Graph, vol. 40, pp. 108-19, Mar 2015, doi:10.1016/j.compmedimag.2014.10.009.
[19] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322.
[20] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.
[21] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
[22] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 10.1109
[23] D. Han, "Comparison of Commonly Used Image InterpolationMethods," March 2013, doi : 10.2991/iccsee.2013.391.
[24] T. M. Lehmann, C. Gonner and K. Spitzer, "Addendum: B-spline interpolation in medical image processing," in IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 660-665, July 2001, doi: 10.1109/42.932749.
[25] R. Szeliski and J.Coughlan, "Spline-Based Image Registration. " in International Journal of Computer Vision 22, pp. 199–218, 1997, doi: https://doi.org/10.1023/A:1007996332012
[26] T. M. Lehmann, C. Gonner and K. Spitzer, "Survey: interpolation methods in medical image processing," in IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1049-1075, Nov. 1999, doi: 10.1109/42.816070.
[27] C. Shorten and T.M. Khoshgoftaar, "A survey on Image Data Augmentation for Deep Learning," J Big Data, vol 6, pp. 60, 2019.doi : https://doi.org/10.1186/s40537-019-0197-0
[28] K. Kamnitsas, , Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert and Ben Glocker., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017, doi: https://doi.org/10.1016/j.media.2016.10.004 .
[29] Jonathan Shapey, Guotai Wang, Reuben Dorent, Alexis Dimitriadis, Wenqi Li, Ian Paddick, Neil Kitchen, Sotirios Bisdas, Shakeel R Saeed, Sebastien Ourselin, Robert Bradford and Tom Vercauteren., "An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI," J Neurosurg, vol. 134, no. 1, pp. 171-179, Dec 6 2019, doi: 10.3171/2019.9.JNS191949.
[30] Hesheng Wang, Tanxia Qu, Kenneth Bernstein, David Barbee and Douglas Kondziolka., "Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network," Radiat Oncol, vol. 18, no. 78, 2023, doi: https://doi.org/10.1186/s13014-023-02263-y.
[31] M. Kattau, B. Glocker and D. Darambara, "A Comparative Analysis of Two Deep Learning Architectures for the Automatic Segmentation of Vestibular Schwannoma," 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Piscataway, NJ, USA, 2021, pp. 1-3, doi: 10.1109/NSS/MIC44867.2021.9875733.
[32] Cheng-chia Lee, Wei-Kai Lee, Chih-Chun Wu, Chia-Feng Lu, Huai-Che Yang, Yu-Wei Chen, Wen-Yuh Chung, Yong-Sin Hu, Hsiu-Mei Wu, Yu-Te Wu and Wan-Yuo Guo., "Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery," Scientific Reports, vol. 11, no. 1, pp. 3106, 2021, doi: https://doi.org/10.1038/s41598-021-82665-8.
[33] Guotai Wang, Jonathan Shapey, Wenqi Li, Reuben Dorent, Alex Demitriadis, Sotirios Bisdas, Ian Paddick, Robert Bradford, Sebastien Ourselin and Tom Vercauteren., "Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss," Cham, 2019: Springer International Publishing, in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, pp. 264-272.
[34] 張博堯。「轉移性腦瘤及其引起腦水腫辨識量化」。碩士論文,國立中央大學電機工程學系,2023。https://hdl.handle.net/11296/badyn6。
[35] Natasha Ironside, Ching-Jen Chen, Simukayi Mutasa, Justin L Sim, Dale Ding, Saurabh Marfatiah, David Roh, Sugoto Mukherjee, Karen C Johnston, Andrew M Southerland, Stephan A Mayer, Angela Lignelli and Edward Sander Connolly., "Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage," (in eng), Stroke, vol. 51, no. 3, pp. 815-823, Mar 2020, doi: 10.1161/strokeaha.119.026764.
[36] 陳至宏。「深度學習於自動分割腦膜瘤放射手術後之水腫區域」。碩士論文,國立中央大學電機工程學系,2022。https://hdl.handle.net/11296/6tfc9m。
[37] A. Demirhan, M. Toru, and I. Guler, "Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks," (in eng), IEEE J Biomed Health Inform, vol. 19, no. 4, pp. 1451-8, Jul 2015, doi: 10.1109/jbhi.2014.2360515.
[38] Yasheng Chen, Rajat Dhar, Laura Heitsch, Andria Ford, Israel Fernandez-Cadenas, Caty Carrera, Joan Montaner, Weili Lin, Dinggang Shen, Hongyu An and Jin-Moo Lee., "Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs," NeuroImage: Clinical, vol. 12, pp. 673-680, 2016, doi: 10.1016/j.nicl.2016.09.018.
[39] Xianjing Zhao, Kaixing Chen, Ge Wu, Guyue Zhang, Xin Zhou, Chuanfeng Lv, Shiman Wu, Yun Chen, Guotong Xie and Zhenwei Yao., "Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema," European Radiology, vol. 31, no. 7, pp. 5012-5020, 2021, doi: 10.1007/s00330-020-07558-2.
[40] Yong En Kok, Stefan Pszczolkowski, Zhe Kang Law, Azlinawati Ali, Kailash Krishnan, Philip M. Bath, Nikola Sprigg, Robert A. Dineen and Andrew P. French., "Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning," Radiology: Artificial Intelligence, vol. 4, no. 6, p. e220096, 2022, doi: 10.1148/ryai.220096.
[41] S. Reza and K. M. Iftekharuddin, "Multi-fractal texture features for brain tumor and edema segmentation," in Medical Imaging 2014: Computer-Aided Diagnosis, vol. 9035: SPIE, pp. 11-20, 2014, doi: 10.1117/12.2044264.
[42] Lucas A. Ramos, Dyantha G. van der Sluijs, Irem M. Baharoglu, Yvo B. Roos, Charles B. Majoie, Ludo F. Beenen, Renan S. de Barros, Silvia D. Olabarriaga and Henk A. Marquering., "Convolutional Neural Networks For Automated Edema Segmentation in Patients With Intracerebral Hemorrhage," Medical Imaging with Deep Learning , 2018. |