參考文獻 |
1. Chan, W.-K., et al., Using Deep Convolutional Neural Networks for Enhanced Ultrasonographic Image Diagnosis of Differentiated Thyroid Cancer. Biomedicines, 2021. 9(12): , pp. 1771-1784, doi:10.3390/biomedicines9121771.
2. Barczyński, M. and M. Iacobone, Introduction to focused series on recent challenges in the management of thyroid tumors. Annals of Thyroid, 2021. 6, doi: http://dx.doi.org/10.21.
3. Nguyen, Q.T., et al., Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits, 2015. 8(1): p. 30-40.
4. Arrangoiz, R., et al., Thyroid Cancer. International Journal of Otolaryngology and Head & Neck Surgery, 2019. 08(06): pp. 217-270, doi: 10.4236/ijohns.2019.86024.
5. Amjoud, A.B. and M. Amrouch, Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review. IEEE Access, 2023. 11: pp. 35479-35516, doi: 10.1109/ACCESS.2023.3266093.
6. Grande, E., et al., Thyroid Cancer: Molecular Aspects and New Therapeutic Strategies. Journal of Thyroid Research, 2012. 2012: p. 847108, doi: 10.1155/2012/847108.
7. Lee, K., et al., Thyroid Cancer, in StatPearls. 2023, StatPearls PublishingCopyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL).
8. Li, H., et al., An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Scientific Reports, 2018. 8(1): pp. 6600-6611, doi: https://doi.org/10.1038/s41598-018-25005-7.
9. Ma, J., et al., Efficient Deep Learning Architecture for Detection and Recognition of Thyroid Nodules. Comput Intell Neurosci, 2020. 2020: pp. 1242781-1242795,doi: 10.1155/2020/1242781.
10. Lu, Y., Y. Yang, and W. Chen, Application of Deep Learning in the Prediction of Benign and Malignant Thyroid Nodules on Ultrasound Images. IEEE Access, 2020. 8: pp. 221468-221480 , doi: 10.1109/ACCESS.2020.3021115.
11. Kwon, S.W., et al., Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology. J Digit Imaging, 2020. 33(5): pp. 1202-1208, doi: 10.1007/s10278-020-00362-w.
12. Ye, H., et al., An intelligent platform for ultrasound diagnosis of thyroid nodules. Scientific Reports, 2020. 10(1): pp. 13223-13229,doi: https://doi.org/10.1038/s41598-020-70159-y.
13. Criminisi, A., P. Perez, and K. Toyama, Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 2004. 13(9): pp. 1200-1212,doi: 10.1109/TIP.2004.833105.
14. Meur, O.L., M. Ebdelli, and C. Guillemot, Hierarchical Super-Resolution-Based Inpainting. IEEE Transactions on Image Processing, 2013. 22(10): pp. 3779-3790, doi: 10.1109/TIP.2013.2261308.
15. Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network. in 2017 International Conference on Engineering and Technology (ICET) , 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.
16. O’Shea, K. and R. Nash, An Introduction to Convolutional Neural Networks. ArXiv, 2015. abs/1511.08458.
17. Alzubaidi, L., et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 2021. 8(1): pp. 53-126, doi: https://doi.org/10.1186/s40537-021-00444-8.
18. Muhammed, M.A.E., A.A. Ahmed, and T.A. Khalid. Benchmark analysis of popular ImageNet classification deep CNN architectures. in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon) , Bengaluru, India, 2017, pp. 902-907, doi: 10.1109/SmartTechCon.2017.8358502.
19. Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012. 60: pp. 84 - 90,doi: https://doi.org/10.1145/3065386.
20. Zhang, H., et al., Research on the Classification of Benign and Malignant Parotid Tumors Based on Transfer Learning and a Convolutional Neural Network. IEEE Access, 2021. 9: pp. 40360-40371, 2021, doi: 10.1109/ACCESS.2021.3064752.
21. Subramanian, M., et al., Multiple Types of Cancer Classification Using CT/MRI Images Based on Learning Without Forgetting Powered Deep Learning Models. IEEE Access, 2023. 11: pp. 10336-10354, doi: 10.1109/ACCESS.2023.3240443.
22. Lohia, A.K., Kalyani Dhananjay; Joshi, Rahul Raghvendra; and Bongale, Dr. Anupkumar M., <Bibliometric Analysis of One-stage and Two-stage Object.pdf>. Library Philosophy and Practice (e-journal). 2021. 4910.
23. Carranza-García, M., et al., On the Performance of One-Stage and Two-Stage Object Detectors in Autonomous Vehicles Using Camera Data. Remote Sensing, 2020. 13(1): pp. 89-100, https://doi.org/10.3390/rs13010089.
24. Ren, S., et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. 39(6): pp. 1137-1149 , doi: 10.1109/TPAMI.2016.2577031..
25. Redmon, J., et al. You Only Look Once: Unified, Real-Time Object Detection. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,doi: https://doi.org/10.48550/arXiv.1506.02640.
26. Jiang, P., et al., A Review of Yolo Algorithm Developments. Procedia Computer Science, 2022. 199: pp. 1066-1073,doi: https://doi.org/10.1016/j.procs.2022.01.135.
27. Bochkovskiy, A., C.-Y. Wang, and H.-y. Liao, YOLOv4: Optimal Speed and Accuracy of Object Detection. 2020,doi: https://doi.org/10.48550/arXiv.2004.10934.
28. Zhang, M., et al., Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion. Remote Sensing, 2021. 13(22): pp. 4706-4727,doi: https://doi.org/10.3390/rs13224706.
29. Kim, T.-G., et al., Recognition of Vehicle License Plates Based on Image Processing. Applied Sciences, 2021. 11(14): pp. 6292-6303,doi: https://doi.org/10.3390/app11146292.
30. F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195.
31. He, K., et al., Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. 2014, Springer International Publishing. pp. 346-361,doi: https://doi.org/10.1007/978-3-319-10578-9_23.
32. Henderson, P. and V. Ferrari, End-to-End Training of Object Class Detectors for Mean Average Precision. 2017, Springer International Publishing. pp. 198-213,doi: https://doi.org/10.1007/978-3-319-54193-8_13.
33. Zheng, T., et al., An Improved Object Detection Algorithm for Thyroid Nodule Ultrasound Image Based on Faster R-CNN. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition, 2023. 54(5): pp. 915-922,doi: 10.12182/20230960106.
34. Yao S, Yan J, Wu M, et al. Texture Synthesis Based Thyroid Nodule Detection From Medical Ultrasound Images: Interpreting and Suppressing the Adversarial Effect of In-place Manual Annotation. Front Bioeng Biotechnol. 2020;8:599. Published 2020 Jun 17. doi:10.3389/fbioe.2020.00599
35. S. Xie, J. Yu, T. Liu, Q. Chang, L. Niu and W. Sun, "Thyroid Nodule Detection in Ultrasound Images with Convolutional Neural Networks," 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi′an, China, 2019, pp. 1442-1446, doi: 10.1109/ICIEA.2019.8834375.
36. Abdolali, F., et al., Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks. Comput Biol Med, 2020. 122: pp. 103871,doi: https://doi.org/10.1016/j.compbiomed.2020.103871. |