博碩士論文 110325602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.147.66.250
姓名 費尤拉(Fefia Yusmasitha Ramdhani)  查詢紙本館藏   畢業系所 土木系營建管理碩士班
論文名稱 預測橋梁緊急維護與檢修之研究-以桃園市轄區橋梁為例
(Predicting Urgency for Bridge Maintenance – Empirical Study in Taoyuan City)
相關論文
★ 運用深度神經網路建立H型鋼構件自動辨識系統之研究★ 運用關聯法則探討協力廠商對營造廠報價行為之研究
★ 探討影響台灣工程顧問公司落實法律遵循反貪腐關鍵因素之研究★ 以分包商角度探討對營造廠報價行為策略之研究
★ 運用SOMCM分群演算法開發設計雲端智慧平台之營運維護產業介面-以桃園市某園區為例★ 專案管理在履約爭議處理機制之比較與研析
★ H型鋼構件智慧塗裝路徑優化研究★ 以資料包絡分析法評估大型統包營造廠之經營績效-以上市櫃公司為例
★ 運用組織特徵映射圖動作軌跡相似度測量法探索預鑄工項生產效率與資源規劃之研究★ 預鑄專案成本估算策略之研究
★ 新建工程建造執照查核缺失要項之探討--以台北市為例★ 灰關聯分析探討古蹟與歷史建築再利用之研究
★ 營造工地管理人資量化與預測★ 公共建設專案現金管理與控制之研究
★ 營建業ERP整合PDA模型之研究★ 水庫營運效益評估之研究-以石門水庫為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) Due to the issue of aging and deterioration has affected 1,138 bridges in Taoyuan over the previous 20 years. It has also resulted in 5 major bridge collapses in Taiwan in the last 5 years. Furthermore, based on Taiwan Vehicular Bridge Management System, over 21% of bridges need maintenance or even overhaul to keep performing the function. This research presents a Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron (MLP) Algorithms and Random Forest (RF) models as an empirical study. The comparison of the accuracy level from different machine learning in this research predicts the urgency to be maintained (U) , which assisted to evaluate and manage existing bridges in Taoyuan city and investigated the applicability of Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) model.
摘要(英) An increase in the worldwide accident rate often occurs in the construction industry. The difficulties that construction engineers face in implementing bridge construction include not only implementation methods, but also force majeure situations such as floods, corrosion deterioration and typhoons, particularly natural disasters that occur unexpectedly. The issue of aging and deterioration has affected 1,138 bridges in Taoyuan over the previous 20 years. It has also resulted in 5 major bridge collapses in Taiwan in the last 5 years. Furthermore, based on Taiwan Vehicular Bridge Management System, over 21% of bridges need maintenance or even overhaul to keep performing the function. This research presents a Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron (MLP) Algorithms and Random Forest (RF) models as an empirical study. The comparison of the accuracy level from different machine learning in this researchpredicts the urgency to be maintained (U) , which assisted to evaluate and manage existing bridges in Taoyuan city and investigated the applicability of Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) model. The datasets collected 6,137 records regarding bridge maintenance for the entire bridges in Taoyuan region from April 2021 to March 2022 in Taiwan Vehicular Bridge Management System. The input space of the model is made up of six features, namely, age of bridge, length of the bridge, width of bridge, span of bridge, bridge component, damage location and quantity. The results show that the accuracy test using Random Forest (RF) model has the higher accuracy or correctly classified rate of xxx than using other 3 models. When it is specified to predict data bridge deterioration, the random forest is the most suitable method that enables the ensemble modelto involve training a large number of decision trees and to combine their predictions. The research findings have proposed several suggestions for further studies such as improving data collection method, collecting more sufficient data, improving data preprocessing, and analyzing and evaluating the most suitable algorithm, which may facilitate handling missing data obtained from random forest and decision tree model.
關鍵字(中) ★ 檢查
★ 預測
★ 準確性
★ 神經網絡
★ 橋樑劣化
關鍵字(英) ★ Inspection
★ Prediction
★ Accuracy
★ Bridge Deterioration
論文目次 TABLE OF CONTENTS

Summary......................................................................................................... i
ABSTRACT............................................................................................. ii
TABLE OF CONTENTS.............................................................................iv
LIST OF FIGURE.....................................................................................v
LIST OF TABLE......................................................................................vi
CHAPTER I INTRODUCTION..................................................................... 1
1.1 Research Background...............................................................................1
1.2 Research Problem.................................................................................... 4
1.3 Research Objective..................................................................................4
1.4 Scope and Limitation................................................................................5
1.5 Research Methodology and Process............................................................... 5
CHAPTER II LITERATURE REVIEW...........................................................7
2.1 Bridge Classification................................................................................. 7
2.2 Bridge Inspection Category, Frequency and Assessment Method............................14
2.3 Application for Prediction in Construction.. .....................................................15
2.4 Summary....... ....................................................................................... 28
CHAPTER III DATA COLLECTION AND ANALYSIS.....................................29
3.1 Data Collection.....................................................................................29
3.2 Basic Analysis....................................................................................... 29
CHAPTER IV URGENCY PREDICTION FOR BRIDGE MAINTENANCE............. 35
4.1. Model Selection.................................................................................... 35
4.2. Results................................................................................................ 40
4.3. Discussion........................................................................................... 44
CHAPTER V CONCLUSION AND SUGGESTION.............................................. 49
5.1. Conclusion...........................................................................................49
5.2. Suggestion............................................................................................ 50
REFERENCE............................................................................................51
APPENDIX............56
參考文獻 Sihombing, L., Optimization Model of Risk Mitigation in Improving The Performance of Safety Construction in Indonesia. 2014.
2. OSHA, D.o.L., and Occupational Safety and Health Administration. Injuries Accident Database. 1985 [cited 2022 November 30]; Available from: https://www.osha.gov/aboutosha.
3. Statistics, U.S.B.o.L. Census of Fatal Occupational Injuries Summary, 2020. 2020 [cited 2022 November 30].
4. Raheem, A.A. and J. Hinze, Disparity between construction safety standards: A global analysis. Safety Science, 2014. 70: p. 276-287.
5. Li, R.Y.M. and S. Poon, Rita Yi Man Li; Sun Wah Poon (2013) Why Do Accidents Happen? A Critical Review on the Evolution of the Construction Accident Causation Models, In Construction Safety, Germany, Springer, pp.13-23. 2013. p. 13-23.
6. Choudhary, S., et al., choudhary et al 2014. 2013.
7. Agrawal, A., et al., Deterioration Rates of Typical Bridge Elements in New York. Vol. 2006. 2006. 1-10.
8. Zhang, W. and N. Wang, Bridge network maintenance prioritization under budget constraint. Structural Safety, 2017. 67: p. 96-104.
9. Officials, A.A.o.S.H.a.T., AASHTO LRFD 2012 Bridge Design Specifications 6th Ed ( US). 6th Edition. 2012.
10. Farhey, D., Deterioration trends and structural performances of bridge types using deck areas. 2016. 30.
11. Garini, E., Collapse of the Nanfangao bridge in Taiwan. 2019.
12. Hong, J.H., et al., Houfeng Bridge Failure in Taiwan. Journal of Hydraulic Engineering, 2012. 138: p. 186-198.
13. Liao, K.W., et al., A probabilistic bridge safety evaluation against floods. Springerplus, 2016. 5(1): p. 783.
14. Chou, J.-S., et al., Machine learning in concrete strength simulations: Multi-nation data analytics. Construction and Building Materials, 2014. 73: p. 771-780.
15. Hung, S.L. and J.-C. Jan, MS_CMAC Neural Network Learning Model in Structural Engineering. Journal of Computing in Civil Engineering, 1999. 13: p. 1-11.
16. Naeej, M., et al., Prediction of lateral confinement coefficient in reinforced concrete columns using M5′ machine learning method. KSCE Journal of Civil Engineering, 2013. 17: p. 1714-1719.
17. Sadowski, L. and J. Hoła, Neural Prediction of the Pull-Off Adhesion of the Concrete Layers in Floors on the Basis of Nondestructive Tests. Procedia Engineering, 2013. 57: p. 986-995.
18. Vanluchene, R.D. and R. Sun, Neural Networks in Structural Engineering. Computer-aided Civil and Infrastructure Engineering, 1990. 5: p. 207-215.
19. Adeli, H., Neural Networks in Civil Engineering: 1989–2000. Computer-Aided Civil and Infrastructure Engineering, 2001. 16(2): p. 126-142.
20. Lu, P., S. Chen, and Y. Zheng, Artificial Intelligence in Civil Engineering. Mathematical Problems in Engineering, 2012. 2012.
21. Kicinger, R., T. Arciszewski, and K. DeJong, Evolutionary Design of Steel Structures in Tall Buildings. Journal of Computing in Civil Engineering - J COMPUT CIVIL ENG, 2005. 19.
22. Kicinger, R., T. Arciszewski, and K.D. Jong, Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 2005. 83(23): p. 1943-1978.
23. Murawski, K., T. Arciszewski, and K. De Jong, Evolutionary Computation in Structural Design. Engineering With Computers, 2000. 16: p. 275-286.
24. Abdulhai, B., R. Pringle, and G. Karakoulas, Reinforcement Learning for True Adaptive Traffic Signal Control. Journal of Transportation Engineering, 2003. 129.
25. Chien, S.I.J., Y. Ding, and C. Wei, Dynamic Bus Arrival Time Prediction with Artificial Neural Networks. Journal of Transportation Engineering-asce - J TRANSP ENG-ASCE, 2002. 128.
26. Liu, M. and D. Frangopol, Probability-Based Bridge Network Performance Evaluation. Journal of Bridge Engineering - J BRIDGE ENG, 2006. 11.
27. Liu, M. and D.M. Frangopol, Balancing Connectivity of Deteriorating Bridge Networks and Long-Term Maintenance Cost through Optimization. Journal of Bridge Engineering, 2005. 10: p. 468-481.
28. Liu, M. and D.M. Frangopol, Time-Dependent Bridge Network Reliability: Novel Approach. Journal of Structural Engineering-asce, 2005. 131: p. 329-337.
29. Liu, M. and D.M. Frangopol, Optimizing Bridge Network Maintenance Management under Uncertainty with Conflicting Criteria: Life-Cycle Maintenance, Failure, and User Costs. Journal of Structural Engineering-asce, 2006. 132: p. 1835-1845.
30. Kim, D.S., Y.S. Yoon, and C.H. Yi, Prevalence comparison of accompanying lesions between primary and recurrent anterior dislocation in the shoulder. Am J Sports Med, 2010. 38(10): p. 2071-6.
31. Wang, X. and G. Foliente, Identifying bridge structural condition development trends via categorical inspection condition rating with case studies. Structure and Infrastructure Engineering, 2008. 4: p. 449 - 466.
32. Nasrollahi, M. and G.A. Washer, Estimating Inspection Intervals for Bridges Based on Statistical Analysis of National Bridge Inventory Data. Journal of Bridge Engineering, 2015. 20: p. 04014104.
33. Administration), F.F.H., Recording and coding guide for the structure inventory and appraisal of the nation’s bridges. 2016.
34. Jootoo, A. and D. Lattanzi, Bridge Type Classification: Supervised Learning on a Modified NBI Data Set. Journal of Computing in Civil Engineering, 2017. 31.
35. Ilbeigi, M. and M. Ebrahimi Meimand, Statistical Forecasting of Bridge Deterioration Conditions. Journal of Performance of Constructed Facilities, 2020. 34: p. 04019104.
36. Administration), F.F.H. Achieving the bridges of tomorrow: The long-term bridge performance program. 2012; Available from: 〈http://www.fhwa.dot.gov/publications/focus/12sep/12sep03.cfm.
37. Kim, K., et al., Prediction of Remaining Life for Bridge Decks Considering Deterioration Factors and Propose of Prioritization Process for Bridge Deck Maintenance. Sustainability, 2020. 12: p. 10625.
38. Hierons, R., Machine learning. Tom M. Mitchell. Published by McGraw-Hill, Maidenhead, U.K., International Student Edition, 1997. ISBN: 0-07-115467-1, 414 pages. Price: U.K. £22.99, soft cover. Software Testing, Verification and Reliability, 1999. 9(3): p. 191-193.
39. Witten, I.H., et al., Data Mining: Practical Machine Learning Tools and Techniques. 2016: Elsevier Science.
40. Arbelaitz, O., et al., J48Consolidated: An implementation of CTC algorithm for WEKA. 2013.
41. Azuaje, F., I. Witten, and F. E, Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. Biomedical Engineering Online - BIOMED ENG ONLINE, 2006. 5: p. 1-2.
42. Feng, C.-W. and H.-Y. Huang, Hybridization of Finite-Element Method and Support Vector Machine to Determine Scour Bridge Safety Level. Journal of Performance of Constructed Facilities, 2013. 29: p. 04014079.
43. Hsu, C.-W., C.-C. Chang, and C.-J. Lin. A Practical Guide to Support Vector Classication. 2008.
44. Gardner, M.W. and S.R. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 1998. 32: p. 2627-2636.
45. Tolstikhin, I.O., et al. MLP-Mixer: An all-MLP Architecture for Vision. in Neural Information Processing Systems. 2021.
46. Mohanty, M.D. and M.N. Mohanty, Verbal sentiment analysis and detection using recurrent neural network. Advanced Data Mining Tools and Methods for Social Computing, 2022.
47. Munirathinam, S., The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, Volume 117 1st Edition. 2020.
48. Menzies, T., et al., Chapter 24. Using Goals in Model-Based Reasoning. 2015.
49. Breiman, L., Random Forests. Machine Learning, 2001. 45: p. 5-32.
50. Saitta, L. and A.i.p.l.i.a. Congress. Machine Learning, Proceedings of the Thirteenth International Conference (ICML ′96), Bari, Italy, July 3-6, 1996. in ICML. 1996.
51. Jahangiri, A., Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Transactions on Intelligent Transportation Systems, 2015: p. 1-12.
52. Lu, Z., et al., Research on Transportation Mode Split Based on Random Forest. 2019. 2270-2281.
53. Tax, D.M.J. and R.P.W. Duin, Support vector domain description. Pattern Recognit. Lett., 1999. 20: p. 1191-1199.
指導教授 陳介豪(Jieh-Haur Chen) 審核日期 2023-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明