博碩士論文 108624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.86.211
姓名 劉姸希(Yen-Hsi Liu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣南部隱沒帶地震地動預估式之研究
(Ground-motion prediction equation for subduction-zone earthquakes in southern Taiwan)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地動預估式是用來評估地動值隨距離衰減的公式,為地震危害度分析中重要的一環。藉由地動預估式可估算場址可能受到的地動值大小,進而作為工程設計上及防災上的考量。
台灣位於歐亞大陸板塊與菲律賓海板塊的交接地帶上,兩板塊的交互作用在台灣外海形成兩個隱沒帶構造,分別是位於東北部外海的琉球隱沒帶和西南部外海的馬尼拉隱沒帶。不同的震源類型其震波特性與衰減模式不盡相同,過去針對台灣隱沒帶地震所建立的地動預估式是以東北部的地震資料來建立,在進行地震危害度分析時,兩個隱沒帶地震皆採用相同的地動預估式,但南部隱沒帶地震與東北部隱沒帶地震的衰減特性可能有所不同,且近幾年來南部隱沒帶地震的資料也較足夠,故本研究針對南部隱沒帶地震建立地動預估式。
本研究以臺灣強地動觀測網1991年至2020年的資料,進行基線校正與濾波並計算反應譜,透過迴歸分析建立台灣西南部隱沒帶地動預估式,供地震危害度分析應用。
摘要(英) Ground-Motion Prediction Equation (GMPE) serves a crucial role in estimating earthquake ground motion, particularly in seismic hazard analysis. Utilizing a GMPE allows us to assess potential ground motion at a specific site of interest and apply this information to engineering design and hazard mitigation purposes.
Taiwan occupies a pivotal position at the convergence boundary of the Philippine Sea plate and the Eurasian plate. The interaction between these plates has created two distinct subduction zones: the Ryukyu subduction zone in northeastern Taiwan and the Manila subduction zone in the southern region. Existing GMPEs for subduction-zone earthquakes in Taiwan mainly come from earthquake data in northeastern Taiwan. However, the attenuation characteristics of earthquakes in the southern subduction zone may be different from those in the northeastern subduction zone. Also, as more earthquake data becomes available, there emerges a need to establish a GMPE specifically tailored for subduction-zone earthquakes occurring in southern Taiwan.
In this study, we utilized strong motion data spanning from 1991 to 2020, recorded by TSMIP. This data has been carefully processed, including baseline correction, filtering, and the calculation of response spectra for furthere use. Leveraging nonlinear regression techniques, we endeavored to construct a set of dedicated GMPEs intended for the earthquakes in the southern subduction zone of Taiwan. 
關鍵字(中) ★ 地動預估式;台灣南部隱沒帶地震;地震危害度分析;非線性迴歸分析 關鍵字(英) ★ Ground-motion prediction equation;Subduction-zone earthquakes;Probabilistic Seismic Hazard Analysis;Non-linear regression analysis
論文目次 第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 國內隱沒帶地動預估式之研究 2
1.2.2 國外隱沒帶地動預估式之研究 4
第二章 研究區域背景概述 14
2.1 台灣地體構造簡介 14
2.2 台灣西南部隱沒帶構造 16
2.3 隱沒帶地震介紹 16
第三章 資料蒐集與處理 19
3.1 地震資料來源 19
3.2 地震測站及相關資訊來源 21
3.2.1 規模參數 21
3.2.2 距離參數 22
3.2.3 測站場址參數 23
3.2.4 地動參數 24
3.3 地震歷時資料處理 26
3.3.1 基線校正 26
3.3.2 高通濾波 28
3.3.3 反應譜加速度計算 30
第四章 研究方法 31
4.1 研究流程 31
4.2 台灣南部隱沒帶範圍 33
4.3 隱沒帶地震分類 37
4.4 強震資料選取 38
4.5 地動預估式建立 41
4.5.1 規模項 42
4.5.2 幾何擴散項 43
4.5.3 深度項 50
4.5.4 場址項 50
4.5.5 震源類型項 51
4.5.6 震源機制項 51
4.5.7 非彈性衰減項 53
4.6 地動預估式回歸分析方法 57
4.6.1 最大概似法 57
4.6.2 混合效應模型 57
4.6.3 統計軟體R 60
第五章 研究結果 61
5.1 地動預估式回歸成果 61
5.2 界面型地震與內部型地震之反應譜比較 76
第六章 討論 80
6.1 本研究與前人研究之比較 80
6.2 屏東雙主震 90
6.3 不同Vs30下之反應譜 93
第七章 結論與建議 94
7.1 結論 94
7.2 建議 94
參考文獻 95
附錄A 本研究選用之南部隱沒帶地震參數 102
附錄B 本研究選用之國外隱沒帶地震參數 106
附錄C 本研究整理之各測站不同來源Vs30 參數 108
附錄D 界面型地震各週期之地動預估式成果 179
附錄E 內部型地震各週期之地動預估式成果 200
參考文獻 Abrahamson, N., Gregor, N., & Addo, K. (2016). BC Hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1), 23-44.
Abrahamson, N. A., & Youngs, R. R. (1992). A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505-510.
Anderson, J. G., Lee, Y., Zeng, Y., & Day, S. (1996). Control of strong motion by the upper 30 meters. Bulletin of the Seismological Society of America, 86(6), 1749-1759.
Ariga, T., Kanno, Y., & Takewaki, I. (2006). Resonant behaviour of base‐isolated high‐rise buildings under long‐period ground motions. The Structural Design of Tall and Special Buildings, 15(3), 325-338.
Armada, L. T., Hsu, S.-K., Dimalanta, C. B., Yumul Jr, G. P., Doo, W.-B., & Yeh, Y.-C. (2020). Forearc structures and deformation along the Manila Trench. Journal of Asian Earth Sciences: X, 4, 100036.
Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703-1729.
Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., Ancheta, T. D., Atkinson, G. M., Baker, J. W., . . . Chiou, B. S.-J. (2014). NGA-West2 research project. Earthquake Spectra, 30(3), 973-987.
Bugeja, R. (2011). Crustal attenuation in the region of the Maltese Islands using Coda Wave Decay. University of Malta,
Byrne, D. E., Davis, D. M., & Sykes, L. R. (1988). Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4), 833-857.
CAMPBELL, K. (1981). A ground motion model for the central United States based on near-source acceleration data.
Campbell, K. W. (1989). The dependence of peak horizontal acceleration on magnitude, distance, and site effects for small-magnitude earthquakes in California and eastern North America. Bulletin of the Seismological Society of America, 79(5), 1311-1346.
Chang, T.-Y., Cotton, F., & Angelier, J. (2001). Seismic attenuation and peak ground acceleration in Taiwan. Bulletin of the Seismological Society of America, 91(5), 1229-1246.
Chao, S.-H., Chiou, B., Hsu, C.-C., & Lin, P.-S. (2020). A horizontal ground-motion model for crustal and subduction earthquakes in Taiwan. Earthquake Spectra, 36(2), 463-506.
Chen, K. H., Kennett, B. L., & Furumura, T. (2013). High‐frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665-680.
Cheng, C., Hsieh, P., Lin, P., Yen, Y., Chan, C., Beer, M., . . . Au, I. (2015). Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, 978-973.
Chin, S.-J., Lin, J.-Y., Yeh, Y.-C., Kuo-Chen, H., & Liang, C.-W. (2019). Seismotectonic characteristics of the Taiwan collision-Manila subduction transition: The effect of pre-existing structures. Journal of Asian Earth Sciences, 173, 113-120.
Crouse, C. (1991). Ground-motion attenuation equations for earthquakes on the Cascadia subduction zone. Earthquake Spectra, 7(2), 201-236.
Crouse, C., Vyas, Y. K., & Schell, B. A. (1988). Ground motions from subduction-zone earthquakes. Bulletin of the Seismological Society of America, 78(1), 1-25.
Gao, J.-C., Chan, C.-H., & Lee, C.-T. (2021). Site-dependent ground-motion prediction equations and uniform hazard response spectra. Engineering Geology, 292, 106241.
Hayes, D. E., & Lewis, S. D. (1984). A geophysical study of the Manila Trench, Luzon, Philippines: 1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research: Solid Earth, 89(B11), 9171-9195.
Jones, T. D. (1985). Frequency-dependent seismic attenuation: Effect on wave propagation. In SEG Technical Program Expanded Abstracts 1985 (pp. 359-361): Society of Exploration Geophysicists.
Ku, C.-Y., & Hsu, S.-K. (2009). Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics, 466(3-4), 229-240.
Kuo, C.-H., Chen, C.-T., Lin, C.-M., Wen, K.-L., Huang, J.-Y., & Chang, S.-C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, 128, 27-41.
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Lin, C.-M., Chang, T.-M., & Kuo, K.-W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., & Sun, P.-L. (2018). Taiwan-specific model for V s30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973-1993.
Lee, C.-T., Cheng, C.-T., Liao, C.-W., & Tsai, Y.-B. (2001). Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5), 1283-1297.
Lee, C.-T., & Tsai, B.-R. (2008). Mapping Vs30 in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 6.
Lee, C. T., Hsieh, B. S., Sung, C. H., & Lin, P. S. (2012). Regional Arias intensity attenuation relationship for Taiwan considering Vs 30. Bulletin of the Seismological Society of America, 102(1), 129-142.
Lin, K. C., Hu, J. C., Ching, K. E., Angelier, J., Rau, R. J., Yu, S. B., . . . Huang, M. H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research: Solid Earth, 115(B7).
Lin, P.-S., & Lee, C.-T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220-240.
Ludwig, W. J. (1970). The Manila Trench and West Luzon Trough—III. Seismic-refraction measurements. Paper presented at the Deep Sea Research and Oceanographic Abstracts.
Montalva, G. A., Bastías, N., & Rodriguez‐Marek, A. (2017). Ground‐motion prediction equation for the Chilean subduction zone. Bulletin of the Seismological Society of America, 107(2), 901-911.
Phung, V.-B., Loh, C. H., Chao, S. H., & Abrahamson, N. A. (2020). Ground motion prediction equation for Taiwan subduction zone earthquakes. Earthquake Spectra, 36(3), 1331-1358.
Rau, R.-J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3-4), 517-532.
Sahakian, V., Baltay, A., Hanks, T., Buehler, J., Vernon, F., Kilb, D., & Abrahamson, N. (2018). Decomposing leftovers: Event, path, and site residuals for a small‐magnitude Anza region GMPE. Bulletin of the Seismological Society of America, 108(5A), 2478-2492.
Seed, H. B., Ugas, C., & Lysmer, J. (1976). Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1), 221-243.
Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941-17948.
Shahi, S. K., & Baker, J. W. (2014). NGA-West2 models for ground motion directionality. Earthquake Spectra, 30(3), 1285-1300.
Silva, W., & Abrahamson, N. (1992). Quantification of long period strong ground motion attenuation for engineering design. Paper presented at the Proceedings of (strong Motion Instrumentation Program) smip92 seminar on seismological and engineering implications of recent strong-motion data. California Division of Mines and Geology, Sacramento, USA.
Tichelaar, B. W., & Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research: Solid Earth, 98(B2), 2017-2037.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Wu, Y.-M., Zhao, L., Chang, C.-H., & Hsu, Y.-J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661.
Youngs, R., Abrahamson, N., Makdisi, F., & Sadigh, K. (1995). Magnitude-dependent variance of peak ground acceleration. Bulletin of the Seismological Society of America, 85(4), 1161-1176.
Youngs, R., Chiou, S.-J., Silva, W., & Humphrey, J. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological research letters, 68(1), 58-73.
Youngs, R., Day, S., & Stevens, J. (1988). Near field ground motions on rock for large subduction earthquakes. Paper presented at the Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-Motion Evaluation.
Zhao, J. X., Jiang, F., Shi, P., Xing, H., Huang, H., Hou, R., . . . Rhoades, D. A. (2016a). Ground‐motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1535-1551.
Zhao, J. X., Liang, X., Jiang, F., Xing, H., Zhu, M., Hou, R., . . . Irikura, K. (2016b). Ground‐motion prediction equations for subduction interface earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1518-1534.
陳燕玲(1995),台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,共172頁。
李景亮、梁英文(1997)。結構耐震設計(3版)。台北:文笙。
林柏伸(2002),台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學應用地質研究所碩士論文,共135頁。
高嘉謙(2014),單站地動預估式建立及場址特定地震危害度分析,國立中央大學應用地質研究所碩士論文,共113頁。
許樹坤等人(2014),馬尼拉隱沒帶的一些地體構造特徵,「南海科學研究特輯」,第84-89頁。
黃文紀(2018),台灣山區地震觀測網(Taiwan Mountain Seismic Network,
MTN),台灣地震科學中心通訊,20,3-4。
葉庭瑜(2016),台灣東北部地區隱沒帶地震單站地動預估式之研究,國立中央大學應用地質研究所碩士論文,共153頁。
楊珮欣(2019),台灣東北部隱沒帶地動預估式之精進研究,國立中央大學應用地質研究所碩士論文,共230頁。
TWSSHAC計畫專案網站(https://sshac.ncree.org.tw/)
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2024-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明