博碩士論文 109323122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.135.206.98
姓名 陳鼎易(Ding-Yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量元素添加對AlTiCrMnV中熵合金之微結構觀察與其機械性質研究
(Effect of Minor Element Addition on the Microstructure and Mechanical properties of AlTiCrMnV Medium Entropy Alloys)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-31以後開放)
摘要(中) 高熵合金因其具有良好的力學性能和應用價值成為當今研究的熱門題目。高熵合金的成分設計以及各個元素之間的相互作用,一直是高熵合金研究領域的核心問題。因此,研究個元素對高熵合金組織及性能的影響,無論從基礎研究的角度考量還是從應用研究的角度考量,都具有實際上的意義。
先前研究的Al50Ti20Cr10Mn15V5 高熵合金為同時具有體心立方以及面心立方的雙相結構,本文取該合金為基體,分別向其中添加硼元素以及鉭元素,以透過固溶強化來提高合金的強度。本文採用電弧熔煉製作試片,進行XRD分析、掃描式電子顯微鏡(SEM)、EDS分析以及壓縮力學性能測試。透過對(Al50Ti20Cr10Mn15V5)100-xBx、Al50Ti20Cr10Mn15V5 + x vol.% Ta兩組合金系的相組成,顯微組織,成分分布及力學性能進行分析,系統的研究其力學性能與組織結構之間的關係。根據實驗結果分析,隨著硼元素的含量增加(原子比為0%-0.5%),合金的硬度,隨著合金元素含量的增加,維氏硬度從316Hv逐漸增加至363Hv,合金的壓縮降伏強度呈現先增加後減少的趨勢,最大增幅為硼元素添加量為0.1 at.%時從705 MPa增加至1004 MPa。隨著鉭元素含量的增加(體積百分比為0%-10%),隨著元素含量的增加合金的壓縮降伏強度增加至1605 MPa,合金的維氏硬度增加至540Hv。
其中在兩個系統中,機械性質最好的成分為(Al50Ti20Cr10Mn15V5)99.9B0.1,其壓縮降伏強度為1002 MPa,最大抗壓強度到達1991 MPa,壓縮率則是37%,根據微結構的觀察,發覺相比例與機械性質會有關聯,增加Al8Mn5相的比例,都可預期會有不錯的機械性質。
摘要(英) High entropy alloys have become a hot issue of latest research due to their good mechanical properties and application value. The component design of high entropy alloys and the interaction among the elements have been the critical factor. Therefore, it is important to figure out the effect of each element on the microstructure and mechanical properties of high entropy alloys.
The previously study found out Al50Ti20Cr10Mn15V5 medium -entropy alloy obtain a dual-phase structure of body-centered cubic and face-centered cubic. In this research, B or Ta elements are added to it to improve the strength of the alloy through solid solution strengthening. All ingots of (Al50Ti20Cr10Mn15V5)100-xBx (x=0-0.5%) and Al50Ti20Cr10Mn15V5 + y vol.% Ta (y=0-10) were prepared by arc melting. According to the analysis results, as the content of B element increases, the hardness increases from 316Hv to 363Hv. The optima compressive yield strength occurs at B=0.1 at.% which is 1004 MPa and 705 MPa for base alloy. With the increase of Ta element content the hardness of the alloy increases from 316Hv to 540Hv. The optima compressive yield strength occurs at Ta=10 vol.% which is 1605 MPa
Among two systems, (Al50Ti20Cr10Mn15V5)99.9B0.1 obtain compressive yield strength 1002 MPa, the ultimate compressive strength 1991 MPa, and the compressibility 37% consider as the most promising composition. According to the microstructure observation results, the ratio of two phase related to the mechanical properties, increasing the proportion of the Al8Mn5 phase can be expected to have better mechanical properties.
關鍵字(中) ★ 輕量化中熵合金
★ 非等原子比
★ 硼元素
★ 鉭元素
關鍵字(英) ★ light-weight MEAs
★ non-equiatomic
★ Boron element
★ Tantalum element
論文目次 摘要 i
ABSTRACT ii
致謝 iii
總目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 傳統高熵合金概述 3
2-1-1 高熵合金的定義和特性 3
2-1-2 高熵合金的成分設計方法 6
2-2 輕質高熵合金概述 9
2-2-1 高熵合金概念的擴展和輕質高熵合金 9
2-2-2 Al-Ti-V系輕質高熵合金 10
2-2-3 Al-Li-Mg系輕質高熵合金 11
2-2-4 Al-Mg-Si 系輕質高熵合金 12
2-2-5 其他含Al輕質高熵合金 13
2-3 元素添加對高熵合金結構與性能的影響 14
2-3-1 合金元素的固溶強化作用 14
2-3-2 合金元素使高熵合金析出第二相 14
2-3-3 合金元素強化物 15
第三章 實驗方法與步驟 25
3-1 元素選擇及設計方法 25
3-2 合金製備 25
3-2-1 合金製備與熔煉 25
3-3 合金密度量測 26
3-4 均質化熱處理 27
3-5 合金微結構分析 27
3-5-1 X光繞射儀(X-ray diffractometer, XRD) 28
3-5-2 光學顯微鏡(Optical Microscopy, OM) 28
3-5-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28
3-6 熱性質分析 29
3-6-1 熱性質分析儀(Differential scanning calorimetry, DSC) 29
3-7 機械性質分析 29
3-7-1 維氏硬度測試 29
3-7-2 壓縮測試 30
第四章 結果與討論 42
4-1 添加微量硼(B)元素之影響 42
4-1-1 密度計算 42
4-1-2 X-ray 繞射分析 42
4-1-3 微觀結構分析 43
4-1-4 成分分析 43
4-1-5 硬度分析 43
4-1-6 壓縮測試分析 44
4-2 添加微量鉭(Ta)元素之影響 45
4-2-1 密度計算 45
4-2-2 X-ray 繞射分析 45
4-2-3 微觀結構分析 46
4-2-4 成分分析 46
4-2-5 硬度分析 47
4-2-6 壓縮測試分析 47
4-3 熱處理 48
第五章 結論 74
參考文獻 75
參考文獻 [1]Jien-Wei, Y. E. H. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648, 2006.
[2]Yeh, J. W., Chen, Y. L., Lin, S. J., Chen, S. K. High-entropy alloys–a new era of exploitation. In Materials science forum (Vol. 560, pp. 1-9). Trans Tech Publications Ltd, 2007.
[3]Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218, 2004.
[4]Zhang, Y. High-Entropy Materials A Brief Introduction, 1-167, 2019.
[5]Chen, S., Xie, X., Li, W., Feng, R., Chen, B., Qiao, J., Liaw, P. K. Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy. Materials Chemistry and Physics, 210, 20-28, 2018.
[6]Gali, A., George, E. P. Tensile properties of high-and medium-entropy alloys. Intermetallics, 39, 74-78, 2013.
[7]Lin, Q., Liu, J., An, X., Wang, H., Zhang, Y., Liao, X. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 6(4), 236-243, 2018.
[8]Liu, J., Guo, X., Lin, Q., He, Z., An, X., Li, L., Zhang, Y. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Science China Materials, 62(6), 853-863, 2019.
[9]Li, D., Gao, M. C., Hawk, J. A., & Zhang, Y. Annealing effect for the Al0. 3CoCrFeNi high-entropy alloy fibers. Journal of Alloys and Compounds, 778, 23-29, 2019.
[10]Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J. J., Zhang, Y. High-entropy Al0. 3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia, 123, 285-294, 2017.
[11]Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., Liaw, P. K. Refractory high-entropy alloys. Intermetallics, 18(9), 1758-1765, 2010.
[12]Lu, Y., Gao, X., Dong, Y., Wang, T., Chen, H. L., Maob, H., Guo, S. Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification. Nanoscale, 10(4), 1912-1919, 2018.
[13]Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Lu, Z. Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering. Advanced Materials, 29(30), 1701678, 2017.
[14]Zhang, Y., Zhang, M., Li, D., Zuo, T., Zhou, K., Gao, M. C., Shen, T. Compositional Design of Soft Magnetic High Entropy Alloys by Minimizing Magnetostriction Coefficient in. High Entropy Materials, 67, 2019.
[15]Zuo, T., Gao, M. C., Ouyang, L., Yang, X., Cheng, Y., Feng, R., Zhang, Y. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia, 130, 10-18, 2017.
[16]Xing, Q., Ma, J., Wang, C., & Zhang, Y. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)–(Ta, W) system. ACS combinatorial science, 20(11), 602-610, 2018.
[17]Zhang, W., Liaw, P. K., & Zhang, Y. A novel low-activation VCrFeTa x W x (x= 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 20(12), 951, 2018.
[18]Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Chang, S. Y. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303, 2004.
[19]Zhang, W., Liaw, P. K., & Zhang, Y. Science and technology in high-entropy alloys. Science China Materials, 61(1), 2-22, 2018.
[20]Tsai, K. Y., Tsai, M. H., & Yeh, J. W. Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897, 2013.
[21]Dąbrowa, J., & Danielewski, M. State-of-the-art diffusion studies in the high entropy alloys. Metals, 10(3), 347, 2020.
[22]Choi, W. M., Jo, Y. H., Sohn, S. S., Lee, S., & Lee, B. J. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4(1), 1-9, 2018.
[23]Lee, C., Song, G., Gao, M. C., Feng, R., Chen, P., Brechtl, J., Liaw, P. K. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Materialia, 160, 158-172, 2018.
[24]Zhou, Y. J., Zhang, Y., Wang, F. J., & Chen, G. L. Phase transformation induced by lattice distortion in multiprincipal component Co Cr Fe Ni Cu x Al 1− x solid-solution alloys. Applied Physics Letters, 92(24), 241917, 2008.
[25]Liang, Y. J., Wang, L., Wen, Y., Cheng, B., Wu, Q., Cao, T., Cai, H. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature communications, 9(1), 1-8, 2018.
[26]Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Liu, C. T. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 362(6417), 933-937, 2018.
[27]Liu, X. F., Tian, Z. L., Zhang, X. F., Chen, H. H., Liu, T. W., Chen, Y., Dai, L. H. “Self-sharpening” tungsten high-entropy alloy. Acta Materialia, 186, 257-266, 2020.
[28]Poletti, M. G., Fiore, G., Gili, F., Mangherini, D., Battezzati, L. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0. 3 and FeCoCrNiW0. 3+ 5 at.% of C. Materials & Design, 115, 247-254, 2017.
[29]Jin, K., Lu, C., Wang, L. M., Qu, J., Weber, W. J., Zhang, Y., Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Materialia, 119, 65-70.3, 2016.
[30]Ma, E., & Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nature communications, 10(1), 1-10, 2019.
[31]Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P., & Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature communications, 7(1), 1-8, 2016.
[32]Shi, Y., Yang, B., Liaw, P. K. Corrosion-resistant high-entropy alloys: A review. Metals, 7(2), 43, 2017.
[33]Li, W., Liaw, P. K., Gao, Y. Fracture resistance of high entropy alloys: A review. Intermetallics, 99, 69-83, 2018.
[34]Li, R., Xie, L., Wang, W. Y., Liaw, P. K., Zhang, Y. High-throughput calculations for high-entropy alloys: a brief review. Frontiers in Materials, 7, 290, 2020.
[35]Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., Liaw, P. K. Solid‐solution phase formation rules for multi‐component alloys. Advanced engineering materials, 10(6), 534-538, 2008.
[36]Yang, X., Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238, 2012.
[37]King, D. J. M., Middleburgh, S. C., McGregor, A. G., Cortie, M. B. Predicting the formation and stability of single phase high-entropy alloys. Acta Materialia, 104, 172-179, 2016.
[38]Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., Yang, Y. Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater, 104, 53-55, 2015.
[39]Ye, Y. F., Wang, Q., Zhao, Y. L., He, Q. F., Lu, J., Yang, Y. Elemental segregation in solid-solution high-entropy alloys: experiments and modeling. Journal of Alloys and Compounds, 681, 167-174, 2016.
[40]Sheng, G. U. O., Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433-446, 2011.
[41]Guo, S., Ng, C., Lu, J., Liu, C. T. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. Journal of applied physics, 109(10), 103505, 2011.
[42]Fang, S., Xiao, X., Xia, L., Li, W., Dong, Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids, 321(1-2), 120-125, 2003.
[43]Poletti, M. G., Battezzati, L. J. A. M. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta materialia, 75, 297-306, 2014.
[44]Ye, Y. F., Liu, X. D., Wang, S., Liu, C. T., Yang, Y. The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 78, 30-41, 2016.
[45]Senkov, O. N., Miracle, D. B. A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. Journal of Alloys and Compounds, 658, 603-607, 2016.
[46]Takeuchi, A. Recent progress in alloy designs for high-entropy crystalline and glassy alloys. Journal of the Japan Society of Powder and Powder Metallurgy, 63(4), 209-216, 2016.
[47]Gurao, N. P., & Biswas, K. In the quest of single phase multi-component multiprincipal high entropy alloys. Journal of Alloys and Compounds, 697, 434-442, 2017.
[48]Zhang, C., Zhang, F., Chen, S., Cao, W. Computational thermodynamics aided high-entropy alloy design. Jom, 64(7), 839-845, 2012.
[49]Chen, H. L., Mao, H., Chen, Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Materials Chemistry and Physics, 210, 279-290, 2018.
[50]Wu, M., Wang, S., Huang, H., Shu, D., Sun, B. CALPHAD aided eutectic high-entropy alloy design. Materials Letters, 262, 127175, 2020.
[51]Curtarolo, S., Morgan, D., Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. Calphad, 29(3), 163-211, 2005.
[52]Curtarolo, S., Setyawan, W., Hart, G. L., Jahnatek, M., Chepulskii, R. V., Taylor, R. H., Morgan, D. AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 58, 218-226, 2012.
[53]Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Wolverton, C. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 1(1), 1-15, 2015.
[54]Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of chemical physics, 134(7), 074106, 2011.
[55]Troparevsky, M. C., Morris, J. R., Kent, P. R., Lupini, A. R., Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Physical Review X, 5(1), 011041, 2015.
[56]Baskar, A., Gireesh Kumar, T. Facial expression classification using machine learning approach: a review. Data engineering and intelligent computing, 337-345, 2018.
[57]Kahng AB. Machine learning applications in physical design. Proceedings of the 2018 International Symposium on Physical Design,68-73, 2018.
[58]Ker, J., Wang, L., Rao, J., & Lim, T. Deep learning applications in medical image analysis. Ieee Access, 6, 9375-9389, 2017.
[59]Dasgupta, A., Gao, Y., Broderick, S. R., Pitman, E. B., Rajan, K. Machine learning-aided identification of single atom alloy catalysts. The Journal of Physical Chemistry C, 124(26), 14158-14166, 2020.
[60]Wu, C. T., Chang, H. T., Wu, C. Y., Chen, S. W., Huang, S. Y., Huang, M., Yen, H. W. Machine learning recommends affordable new Ti alloy with bone-like modulus. Materials Today, 34, 41-50, 2020.
[61]Agnew, S. R., Yoo, M. H., Tome, C. N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta materialia, 49(20), 4277-4289, 2001.
[62]Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny, M. B., Mollo, A., Norquist, A. J. Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601), 73-76, 2016.
[63]Zhou, Z., Zhou, Y., He, Q., Ding, Z., Li, F., Yang, Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Computational Materials, 5(1), 1-9, 2019.
[64]Wang, Y. P., Li, B. S., Ren, M. X., Yang, C., Fu, H. Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1-2), 154-158, 2008.
[65]Li, C., Li, J. C., Zhao, M., Jiang, Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475(1-2), 752-757, 2009.
[66]Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), 227-230, 2016.
[67]Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Zhao, Y. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2. 1 eutectic high-entropy alloy. Acta Materialia, 141, 59-66, 2017.
[68]Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia, 83, 37-54, 2019.
[69]Xu, W., Birbilis, N., Sha, G., Wang, Y., Daniels, J. E., Xiao, Y., Ferry, M. A high-specific-strength and corrosion-resistant magnesium alloy. Nature materials, 14(12), 1229-1235, 2015.
[70]Zhu, Q., Cao, L., Wu, X., Zou, Y., Couper, M. J. Effect of Ag on age-hardening response of Al-Zn-Mg-Cu alloys. Materials Science and Engineering: A, 754, 265-268, 2019.
[71]Kumar, A., Gupta, M. An insight into evolution of light weight high entropy alloys: a review. Metals, 6(9), 199, 2016.
[72]Senkov, O. N., Senkova, S. V., Miracle, D. B., Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 565, 51-62, 2013.
[73]Senkov, O. N., Senkova, S. V., Woodward, C., Miracle, D. B. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), 1545-1557, 2013.
[74]Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., Tikhonovsky, M. A. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153-155, 2015.
[75]Chauhan, P., Yebaji, S., Nadakuduru, V. N., Shanmugasundaram, T. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 820, 153367, 2020.
[76]Feng, R., Gao, M. C., Lee, C., Mathes, M., Zuo, T., Chen, S., Liaw, P. K. Design of light-weight high-entropy alloys. Entropy, 18(9), 333, 2016.
[77]Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., Liaw, P. K. Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 146, 280-293, 2018.
[78]Qiu, Y., Hu, Y. J., Taylor, A., Styles, M. J., Marceau, R. K. W., Ceguerra, A. V., Birbilis, N. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Materialia, 123, 115-124, 2017.
[79]Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., Koch, C. C. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95-99, 2015.
[80]Jia, Y., Jia, Y., Wu, S., Ma, X., & Wang, G. Novel ultralight-weight complex concentrated alloys with high strength. Materials, 12(7), 1136, 2019.
[81]Du, X. H., Wang, R., Chen, C., Wu, B. L., & Huang, J. C. Preparation of a light-weight MgCaAlLiCu high-entropy alloy. In Key Engineering Materials (Vol. 727, pp. 132-135). Trans Tech Publications Ltd, 2017.
[82]Shao, L., Zhang, T., Li, L., Zhao, Y., Huang, J., Liaw, P. K., & Zhang, Y. A low-cost lightweight entropic alloy with high strength. Journal of Materials Engineering and Performance, 27(12), 6648-6656, 2018.
[83]Li, Y., Li, R., Zhang, Y. Effects of Si addition on microstructure, properties and serration behaviors of lightweight Al-Mg-Zn-Cu medium-entropy alloys. Research and Application of Materials Science, 1(1), 7-13, 2019.
[84]Baek, E. J., Ahn, T. Y., Jung, J. G., Lee, J. M., Cho, Y. R., Euh, K. Effects of ultrasonic melt treatment and solution treatment on the microstructure and mechanical properties of low-density multicomponent Al70Mg10Si10Cu5Zn5 alloy. Journal of Alloys and Compounds, 696, 450-459, 2017.
[85]Ahn, T. Y., Jung, J. G., Baek, E. J., Hwang, S. S., Euh, K. Temporal evolution of precipitates in multicomponent Al–6Mg–9Si–10Cu–10Zn–3Ni alloy studied by complementary experimental methods. Journal of Alloys and Compounds, 701, 660-668, 2017.
[86]Ahn, T. Y., Jung, J. G., Baek, E. J., Hwang, S. S., & Euh, K. Temperature dependence of precipitation behavior of Al–6Mg–9Si–10Cu–10Zn–3Ni natural composite and its impact on mechanical properties. Materials Science and Engineering: A, 695, 45-54, 2017.
[87]Sanchez, J. M., Vicario, I., Albizuri, J., Guraya, T., Acuña, E. M. Design, microstructure and mechanical properties of cast medium entropy aluminium alloys. Scientific Reports, 9(1), 1-12, 2019.
[88]Sanchez, J. M., Vicario, I., Albizuri, J., Guraya, T., Garcia, J. C. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. Journal of Materials Research and Technology, 8(1), 795-803, 2019.
[89]Li, R., Gao, J. C., Fan, K. Study to microstructure and mechanical properties of Mg containing high entropy alloys. In Materials Science Forum (Vol. 650, pp. 265-271). Trans Tech Publications Ltd, 2010.
[90]Li, R., Gao, J. C., Fan, K. Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. In Materials Science Forum (Vol. 686, pp. 235-241). Trans Tech Publications Ltd, 2011.
[91]Sharma, A., Oh, M. C., Ahn, B. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Materials Science and Engineering: A, 797, 140066, 2020.
[92]Callister Jr, W. D., Rethwisch, D. G. Callister′s materials science and engineering. John Wiley & Sons, 2020.
[93]Hsu, C. Y., Wang, W. R., Tang, W. Y., Chen, S. K., Yeh, J. W. Microstructure and mechanical properties of new AlCoxCrFeMo0. 5Ni High‐Entropy Alloys. Advanced Engineering Materials, 12(1‐2), 44-49, 2010.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明