參考文獻 |
[1]Jien-Wei, Y. E. H. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648, 2006.
[2]Yeh, J. W., Chen, Y. L., Lin, S. J., Chen, S. K. High-entropy alloys–a new era of exploitation. In Materials science forum (Vol. 560, pp. 1-9). Trans Tech Publications Ltd, 2007.
[3]Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218, 2004.
[4]Zhang, Y. High-Entropy Materials A Brief Introduction, 1-167, 2019.
[5]Chen, S., Xie, X., Li, W., Feng, R., Chen, B., Qiao, J., Liaw, P. K. Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy. Materials Chemistry and Physics, 210, 20-28, 2018.
[6]Gali, A., George, E. P. Tensile properties of high-and medium-entropy alloys. Intermetallics, 39, 74-78, 2013.
[7]Lin, Q., Liu, J., An, X., Wang, H., Zhang, Y., Liao, X. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 6(4), 236-243, 2018.
[8]Liu, J., Guo, X., Lin, Q., He, Z., An, X., Li, L., Zhang, Y. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Science China Materials, 62(6), 853-863, 2019.
[9]Li, D., Gao, M. C., Hawk, J. A., & Zhang, Y. Annealing effect for the Al0. 3CoCrFeNi high-entropy alloy fibers. Journal of Alloys and Compounds, 778, 23-29, 2019.
[10]Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J. J., Zhang, Y. High-entropy Al0. 3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia, 123, 285-294, 2017.
[11]Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., Liaw, P. K. Refractory high-entropy alloys. Intermetallics, 18(9), 1758-1765, 2010.
[12]Lu, Y., Gao, X., Dong, Y., Wang, T., Chen, H. L., Maob, H., Guo, S. Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification. Nanoscale, 10(4), 1912-1919, 2018.
[13]Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Lu, Z. Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering. Advanced Materials, 29(30), 1701678, 2017.
[14]Zhang, Y., Zhang, M., Li, D., Zuo, T., Zhou, K., Gao, M. C., Shen, T. Compositional Design of Soft Magnetic High Entropy Alloys by Minimizing Magnetostriction Coefficient in. High Entropy Materials, 67, 2019.
[15]Zuo, T., Gao, M. C., Ouyang, L., Yang, X., Cheng, Y., Feng, R., Zhang, Y. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia, 130, 10-18, 2017.
[16]Xing, Q., Ma, J., Wang, C., & Zhang, Y. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)–(Ta, W) system. ACS combinatorial science, 20(11), 602-610, 2018.
[17]Zhang, W., Liaw, P. K., & Zhang, Y. A novel low-activation VCrFeTa x W x (x= 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 20(12), 951, 2018.
[18]Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Chang, S. Y. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303, 2004.
[19]Zhang, W., Liaw, P. K., & Zhang, Y. Science and technology in high-entropy alloys. Science China Materials, 61(1), 2-22, 2018.
[20]Tsai, K. Y., Tsai, M. H., & Yeh, J. W. Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897, 2013.
[21]Dąbrowa, J., & Danielewski, M. State-of-the-art diffusion studies in the high entropy alloys. Metals, 10(3), 347, 2020.
[22]Choi, W. M., Jo, Y. H., Sohn, S. S., Lee, S., & Lee, B. J. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4(1), 1-9, 2018.
[23]Lee, C., Song, G., Gao, M. C., Feng, R., Chen, P., Brechtl, J., Liaw, P. K. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Materialia, 160, 158-172, 2018.
[24]Zhou, Y. J., Zhang, Y., Wang, F. J., & Chen, G. L. Phase transformation induced by lattice distortion in multiprincipal component Co Cr Fe Ni Cu x Al 1− x solid-solution alloys. Applied Physics Letters, 92(24), 241917, 2008.
[25]Liang, Y. J., Wang, L., Wen, Y., Cheng, B., Wu, Q., Cao, T., Cai, H. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature communications, 9(1), 1-8, 2018.
[26]Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Liu, C. T. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 362(6417), 933-937, 2018.
[27]Liu, X. F., Tian, Z. L., Zhang, X. F., Chen, H. H., Liu, T. W., Chen, Y., Dai, L. H. “Self-sharpening” tungsten high-entropy alloy. Acta Materialia, 186, 257-266, 2020.
[28]Poletti, M. G., Fiore, G., Gili, F., Mangherini, D., Battezzati, L. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0. 3 and FeCoCrNiW0. 3+ 5 at.% of C. Materials & Design, 115, 247-254, 2017.
[29]Jin, K., Lu, C., Wang, L. M., Qu, J., Weber, W. J., Zhang, Y., Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Materialia, 119, 65-70.3, 2016.
[30]Ma, E., & Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nature communications, 10(1), 1-10, 2019.
[31]Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P., & Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature communications, 7(1), 1-8, 2016.
[32]Shi, Y., Yang, B., Liaw, P. K. Corrosion-resistant high-entropy alloys: A review. Metals, 7(2), 43, 2017.
[33]Li, W., Liaw, P. K., Gao, Y. Fracture resistance of high entropy alloys: A review. Intermetallics, 99, 69-83, 2018.
[34]Li, R., Xie, L., Wang, W. Y., Liaw, P. K., Zhang, Y. High-throughput calculations for high-entropy alloys: a brief review. Frontiers in Materials, 7, 290, 2020.
[35]Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., Liaw, P. K. Solid‐solution phase formation rules for multi‐component alloys. Advanced engineering materials, 10(6), 534-538, 2008.
[36]Yang, X., Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238, 2012.
[37]King, D. J. M., Middleburgh, S. C., McGregor, A. G., Cortie, M. B. Predicting the formation and stability of single phase high-entropy alloys. Acta Materialia, 104, 172-179, 2016.
[38]Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., Yang, Y. Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater, 104, 53-55, 2015.
[39]Ye, Y. F., Wang, Q., Zhao, Y. L., He, Q. F., Lu, J., Yang, Y. Elemental segregation in solid-solution high-entropy alloys: experiments and modeling. Journal of Alloys and Compounds, 681, 167-174, 2016.
[40]Sheng, G. U. O., Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433-446, 2011.
[41]Guo, S., Ng, C., Lu, J., Liu, C. T. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. Journal of applied physics, 109(10), 103505, 2011.
[42]Fang, S., Xiao, X., Xia, L., Li, W., Dong, Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids, 321(1-2), 120-125, 2003.
[43]Poletti, M. G., Battezzati, L. J. A. M. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta materialia, 75, 297-306, 2014.
[44]Ye, Y. F., Liu, X. D., Wang, S., Liu, C. T., Yang, Y. The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 78, 30-41, 2016.
[45]Senkov, O. N., Miracle, D. B. A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. Journal of Alloys and Compounds, 658, 603-607, 2016.
[46]Takeuchi, A. Recent progress in alloy designs for high-entropy crystalline and glassy alloys. Journal of the Japan Society of Powder and Powder Metallurgy, 63(4), 209-216, 2016.
[47]Gurao, N. P., & Biswas, K. In the quest of single phase multi-component multiprincipal high entropy alloys. Journal of Alloys and Compounds, 697, 434-442, 2017.
[48]Zhang, C., Zhang, F., Chen, S., Cao, W. Computational thermodynamics aided high-entropy alloy design. Jom, 64(7), 839-845, 2012.
[49]Chen, H. L., Mao, H., Chen, Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Materials Chemistry and Physics, 210, 279-290, 2018.
[50]Wu, M., Wang, S., Huang, H., Shu, D., Sun, B. CALPHAD aided eutectic high-entropy alloy design. Materials Letters, 262, 127175, 2020.
[51]Curtarolo, S., Morgan, D., Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. Calphad, 29(3), 163-211, 2005.
[52]Curtarolo, S., Setyawan, W., Hart, G. L., Jahnatek, M., Chepulskii, R. V., Taylor, R. H., Morgan, D. AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 58, 218-226, 2012.
[53]Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Wolverton, C. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 1(1), 1-15, 2015.
[54]Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of chemical physics, 134(7), 074106, 2011.
[55]Troparevsky, M. C., Morris, J. R., Kent, P. R., Lupini, A. R., Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Physical Review X, 5(1), 011041, 2015.
[56]Baskar, A., Gireesh Kumar, T. Facial expression classification using machine learning approach: a review. Data engineering and intelligent computing, 337-345, 2018.
[57]Kahng AB. Machine learning applications in physical design. Proceedings of the 2018 International Symposium on Physical Design,68-73, 2018.
[58]Ker, J., Wang, L., Rao, J., & Lim, T. Deep learning applications in medical image analysis. Ieee Access, 6, 9375-9389, 2017.
[59]Dasgupta, A., Gao, Y., Broderick, S. R., Pitman, E. B., Rajan, K. Machine learning-aided identification of single atom alloy catalysts. The Journal of Physical Chemistry C, 124(26), 14158-14166, 2020.
[60]Wu, C. T., Chang, H. T., Wu, C. Y., Chen, S. W., Huang, S. Y., Huang, M., Yen, H. W. Machine learning recommends affordable new Ti alloy with bone-like modulus. Materials Today, 34, 41-50, 2020.
[61]Agnew, S. R., Yoo, M. H., Tome, C. N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta materialia, 49(20), 4277-4289, 2001.
[62]Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny, M. B., Mollo, A., Norquist, A. J. Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601), 73-76, 2016.
[63]Zhou, Z., Zhou, Y., He, Q., Ding, Z., Li, F., Yang, Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Computational Materials, 5(1), 1-9, 2019.
[64]Wang, Y. P., Li, B. S., Ren, M. X., Yang, C., Fu, H. Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1-2), 154-158, 2008.
[65]Li, C., Li, J. C., Zhao, M., Jiang, Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475(1-2), 752-757, 2009.
[66]Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), 227-230, 2016.
[67]Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Zhao, Y. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2. 1 eutectic high-entropy alloy. Acta Materialia, 141, 59-66, 2017.
[68]Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia, 83, 37-54, 2019.
[69]Xu, W., Birbilis, N., Sha, G., Wang, Y., Daniels, J. E., Xiao, Y., Ferry, M. A high-specific-strength and corrosion-resistant magnesium alloy. Nature materials, 14(12), 1229-1235, 2015.
[70]Zhu, Q., Cao, L., Wu, X., Zou, Y., Couper, M. J. Effect of Ag on age-hardening response of Al-Zn-Mg-Cu alloys. Materials Science and Engineering: A, 754, 265-268, 2019.
[71]Kumar, A., Gupta, M. An insight into evolution of light weight high entropy alloys: a review. Metals, 6(9), 199, 2016.
[72]Senkov, O. N., Senkova, S. V., Miracle, D. B., Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 565, 51-62, 2013.
[73]Senkov, O. N., Senkova, S. V., Woodward, C., Miracle, D. B. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), 1545-1557, 2013.
[74]Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., Tikhonovsky, M. A. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153-155, 2015.
[75]Chauhan, P., Yebaji, S., Nadakuduru, V. N., Shanmugasundaram, T. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 820, 153367, 2020.
[76]Feng, R., Gao, M. C., Lee, C., Mathes, M., Zuo, T., Chen, S., Liaw, P. K. Design of light-weight high-entropy alloys. Entropy, 18(9), 333, 2016.
[77]Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., Liaw, P. K. Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 146, 280-293, 2018.
[78]Qiu, Y., Hu, Y. J., Taylor, A., Styles, M. J., Marceau, R. K. W., Ceguerra, A. V., Birbilis, N. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Materialia, 123, 115-124, 2017.
[79]Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., Koch, C. C. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95-99, 2015.
[80]Jia, Y., Jia, Y., Wu, S., Ma, X., & Wang, G. Novel ultralight-weight complex concentrated alloys with high strength. Materials, 12(7), 1136, 2019.
[81]Du, X. H., Wang, R., Chen, C., Wu, B. L., & Huang, J. C. Preparation of a light-weight MgCaAlLiCu high-entropy alloy. In Key Engineering Materials (Vol. 727, pp. 132-135). Trans Tech Publications Ltd, 2017.
[82]Shao, L., Zhang, T., Li, L., Zhao, Y., Huang, J., Liaw, P. K., & Zhang, Y. A low-cost lightweight entropic alloy with high strength. Journal of Materials Engineering and Performance, 27(12), 6648-6656, 2018.
[83]Li, Y., Li, R., Zhang, Y. Effects of Si addition on microstructure, properties and serration behaviors of lightweight Al-Mg-Zn-Cu medium-entropy alloys. Research and Application of Materials Science, 1(1), 7-13, 2019.
[84]Baek, E. J., Ahn, T. Y., Jung, J. G., Lee, J. M., Cho, Y. R., Euh, K. Effects of ultrasonic melt treatment and solution treatment on the microstructure and mechanical properties of low-density multicomponent Al70Mg10Si10Cu5Zn5 alloy. Journal of Alloys and Compounds, 696, 450-459, 2017.
[85]Ahn, T. Y., Jung, J. G., Baek, E. J., Hwang, S. S., Euh, K. Temporal evolution of precipitates in multicomponent Al–6Mg–9Si–10Cu–10Zn–3Ni alloy studied by complementary experimental methods. Journal of Alloys and Compounds, 701, 660-668, 2017.
[86]Ahn, T. Y., Jung, J. G., Baek, E. J., Hwang, S. S., & Euh, K. Temperature dependence of precipitation behavior of Al–6Mg–9Si–10Cu–10Zn–3Ni natural composite and its impact on mechanical properties. Materials Science and Engineering: A, 695, 45-54, 2017.
[87]Sanchez, J. M., Vicario, I., Albizuri, J., Guraya, T., Acuña, E. M. Design, microstructure and mechanical properties of cast medium entropy aluminium alloys. Scientific Reports, 9(1), 1-12, 2019.
[88]Sanchez, J. M., Vicario, I., Albizuri, J., Guraya, T., Garcia, J. C. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. Journal of Materials Research and Technology, 8(1), 795-803, 2019.
[89]Li, R., Gao, J. C., Fan, K. Study to microstructure and mechanical properties of Mg containing high entropy alloys. In Materials Science Forum (Vol. 650, pp. 265-271). Trans Tech Publications Ltd, 2010.
[90]Li, R., Gao, J. C., Fan, K. Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. In Materials Science Forum (Vol. 686, pp. 235-241). Trans Tech Publications Ltd, 2011.
[91]Sharma, A., Oh, M. C., Ahn, B. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Materials Science and Engineering: A, 797, 140066, 2020.
[92]Callister Jr, W. D., Rethwisch, D. G. Callister′s materials science and engineering. John Wiley & Sons, 2020.
[93]Hsu, C. Y., Wang, W. R., Tang, W. Y., Chen, S. K., Yeh, J. W. Microstructure and mechanical properties of new AlCoxCrFeMo0. 5Ni High‐Entropy Alloys. Advanced Engineering Materials, 12(1‐2), 44-49, 2010. |