參考文獻 |
Canepari, S., Farao, C., Marconi, E., Giovannelli, C., Perrino, C., 2013. Qualitative and quantitative determination of water in airborne particulate matter. Atmospheric Chemistry and Physics 13, 1193-1202.
Canepari, S., Simonetti, G., Perrino, C., 2017. Mass size distribution of particle-bound water. Atmospheric Environment. 165, 46-56.
Carrico, C.M., Petters, M.D., Kreidenweis, S.M., Sullivan, A.P., McMeeking, G.R., Levin, E.J.T., Engling, G., Malm, W.C., Collett, J.L., Jr., 2010. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics 10, 5165-5178.
Chan, M.N., Choi, M.Y., Ng, N.L., Chan, C.K., 2005. Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols: Amino Acids and Biomass Burning Derived Organic Species. Environmental Science and Technology 39, 1555-1562.
Chang, S.-Y., Lee, C.-T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmospheric Environment. 36, 1521-1530.
Choi, M.Y., Chan, C.K., 2002. Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds. The Journal of Physical Chemistry A 106, 4566-4572.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. Thermodynamic model of the system H+− NH4+− Na+− SO42-− NO3-− Cl-− H2O at 298.15 K. The Journal of Physical Chemistry A 102, 2155-2171.
Colbeck, I., Harrison, R.M. (1984). Ozone—secondary aerosol—visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Cruz, C.N., Pandis, S.N., 2000. Deliquescence and hygroscopic growth of mixed inorganic− organic atmospheric aerosol. Environmental Science and Technology 34, 4313-4319.
Dai, H., Gui, H., Zhang, J., Wei, X., Xie, Z., Bian, J., Chen, D.-R., Liu, J., 2021. An active RH-controlled dry-ambient aerosol size spectrometer (DAASS) for the accurate measurement of ambient aerosol water content. Journal of Aerosol Science 158, 105831.
Dick, W.D., Saxena, P., McMurry, P.H., 2000. Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research: Atmospheres 105, 1471-1479.
Engelhart, G., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N.M., Pandis, S.N., 2011. Water content of aged aerosol. Atmospheric Chemistry and Physics 11, 911-920.
Fajardo, O.A., Jiang, J., Hao, J., 2016. Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing. Aerosol and Air Quality Research 16, 1152-1164.
Faust, J.A., Wong, J.P., Lee, A.K., Abbatt, J.P., 2017. Role of aerosol liquid water in secondary organic aerosol formation from volatile organic compounds. Environmental Science and Technology 51, 1405-1413.
Fredenslund, A., Jones, R.L., Prausnitz, J.M., 1975. Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal 21, 1086-1099.
Friese, E., Ebel, A., 2010. Temperature dependent thermodynamic model of the system H+− NH4+− Na+− SO42−− NO3−− Cl−− H2O. The Journal of Physical Chemistry A 114, 11595-11631.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+−Ca2+−Mg2+− NH4+−Na+−SO42-−NO3-−Cl-−H2O aerosols. Atmos. Chem. and Phys. 7, 4639-4659.Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., 2020. Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics 20, 901-914.
Gysel, M., Weingartner, E., Baltensperger, U., 2002. Hygroscopicity of Aerosol Particles at Low Temperatures. 2. Theoretical and Experimental Hygroscopic Properties of Laboratory Generated Aerosols. Environmental Science and Technology 36, 63-68.
Hakala, J., Mikkilä, J., Hong, J., Ehn, M., Petäjä, T., 2017. VH-TDMA: A description and verification of an instrument to measure aerosol particle hygroscopicity and volatility. Aerosol Science and Technology 51, 97-107.
Hänel, G., 1976. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics 19, 73-188.
Hennig, T., Massling, A., Brechtel, F., Wiedensohler, A., 2005. A tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90% and 98% relative humidity. Journal of Aerosol Science 36, 1210-1223.
Hu, D., Chen, J., Ye, X., Li, L., Yang, X., 2011. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor. Atmospheric Environment 45, 2349-2355.
Koehler, K., Kreidenweis, S., DeMott, P., Prenni, A., Carrico, C., Ervens, B., Feingold, G., 2006. Water activity and activation diameters from hygroscopicity data-Part II: Application to organic species. Atmospheric Chemistry and Physics 6, 795-809.
Kuang, Y., Zhao, C.S., Zhao, G., Tao, J.C., Xu, W., Ma, N., Bian, Y.X., 2018. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system. Atmospheric Measurement Techniques 11, 2967.
Lee, C.-T., Chang, S.-Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lee, C.-T., Hsu, W.-C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, Y.-C., Jeng, F.-T., Chen, C.-C., 2008. Technique for aerosol generation with controllable micrometer size distribution. Chemosphere 73, 760-767.
Li, X., Song, S., Zhou, W., Hao, J., Worsnop, D.R., Jiang, J., 2019. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics 19, 12163-12174
Liu, Q., Jing, B., Peng, C., Tong, S., Wang, W., Ge, M., 2016. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance. Atmospheric Environment 125, 69-77.
Ma, Q., Ma, J., Liu, C., Lai, C., He, H., 2013. Laboratory study on the hygroscopic behavior of external and internal C2–C4 dicarboxylic acid–NaCl mixtures. Environmental Science and Technology 47, 10381-10388.
Ma, Q., Zhong, C., Liu, C., Liu, J., Ma, J., Wu, L., He, H., 2019. A comprehensive study about the hygroscopic behavior of mixtures of oxalic acid and nitrate salts: implication for the occurrence of atmospheric metal oxalate complex. ACS Earth and Space Chemistry 3, 1216-1225.
Meyer, A., Boyd, C., 1959. Determination of water by titration with coulometrically generated Karl Fischer reagent. Analytical Chemistry 31, 215-219.
Mikhailov, E., Vlasenko, S., Niessner, R., Pöschl, U., 2003. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement. Atmospheric Chemistry and Physics Discussions 3(5), 4755-4832.
Park, K., Kim, J.-S., Miller, A.L., 2009. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM. Journal of Nanoparticle Research 11, 175-183.
Perrino, C., Catrambone, M., Farao, C., Canepari, S., 2016. Assessing the contribution of water to the mass closure of PM10. Atmospheric Environment 140, 555-564.
Petters, M., Kreidenweis, S., 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity–Part 2: Including solubility. Atmospheric Chemistry and Physics 8, 6273-6279.
Petters, M.D., Kreidenweis, S.M., 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961-1971.
Rader, D., McMurry, P.H., 1986. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. Journal of Aerosol Science 17, 771-787.
Ren, J., Tan, W., Tian, X., Wu, Z., Li, C., Li, J., Zhao, C., Liu, D., Kang, L., Zhu, T., 2021. Retrieval of aerosol liquid water content from high spectral resolution lidar. Science of The Total Environment 799, 149423.
Rossich Molina, E.a., Gerber, R.B., 2019. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets. The Journal of Physical Chemistry A 124, 224-228.
Speer, R., Barnes, H., Brown, R., 1997. An instrument for measuring the liquid water content of aerosols. Aerosol Science and Technology 27, 50-61.
Sporre, M.K., Blichner, S.M., Schrödner, R., Karset, I.H., Berntsen, T.K., Noije, T.v., Bergman, T., O′donnell, D., Makkonen, R., 2020. Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models. Atmospheric Chemistry and Physics 20, 8953-8973.
Stanier, C.O., Khlystov, A.Y., Chan, W.R., Mandiro, M., Pandis, S.N., 2004. A Method for the In Situ Measurement of Fine Aerosol Water Content of Ambient Aerosols: The Dry-Ambient Aerosol Size Spectrometer (DAASS) Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology 38, 215-228.
Stolzenburg, M., McMurry, P., 1988. TDMAFIT User’s Manual, Particle Technology Laboratory, Department of Mechanical Engineering. University of Minnesota, Minneapolis, MN, USA.
Tan, H., Xu, H., Wan, Q., Li, F., Deng, X., Chan, P.W., Xia, D., Yin, Y., 2013. Design and application of an unattended multifunctional H-TDMA system. Journal of Atmospheric and Oceanic Technology 30, 1136-1148.
Tan, W., Yu, Y., Li, C., Li, J., Kang, L., Dong, H., Zeng, L., Zhu, T., 2020. Profiling aerosol liquid water content using a polarization lidar. Environmental Science and Technology 54, 3129-3137.
Tang, I., Fung, K., Imre, D., Munkelwitz, H., 1995. Phase transformation and metastability of hygroscopic microparticles. Aerosol Science and Technology 23, 443-453.
Tang, I.N., 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research: Atmospheres 101, 19245-19250.
Tsai, Y.I., Kuo, S.-C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Wexler, A.S., Seinfeld, J.H., 1991. Second-generation inorganic aerosol model. Atmospheric Environment. Part A. General Topics 25, 2731-2748.
Widziewicz-Rzońca, K., Tytła, M., 2020a. First systematic review on PM-bound water: exploring the existing knowledge domain using the CiteSpace software. Scientometrics 124, 1945-2008.
Widziewicz-Rzońca, K., Tytła, M., 2020b. Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health 17, 5180.
Wong, J.P., Lee, A.K., Abbatt, J.P., 2015. Impacts of sulfate seed acidity and water content on isoprene secondary organic aerosol formation. Environmental Science and Technology 49, 13215-13221.
Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T., Sadanaga, Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., 2020. Aerosol liquid water promotes the formation of water-soluble organic nitrogen in submicrometer aerosols in a suburban forest. Environmental Science and Technology 54, 1406-1414.
Zhang, X., Murakami, T., Wang, J., Aikawa, M., 2021. Sources, species and secondary formation of atmospheric aerosols and gaseous precursors in the suburb of Kitakyushu, Japan. Science of The Total Environment 763, 143001.
|