摘要(英) |
In the electronics manufacturing industry, the use of hazardous chemicals in research and development (R&D) facilities is commonplace. Identifying high-risk substances quickly, economically, and conveniently is crucial for ensuring workplace safety. This study employed the Chemical Control Banding (CCB) and Semi-Quantitative Risk Assessment (SQRA) methods to conduct a semi-quantitative exposure assessment of 48 hazardous chemicals utilized in the packaging laboratory of an R&D plant within the electronics manufacturing industry (referred to as the case study plant). The aim of this assessment was to identify chemicals with high-risk potential in the workplace. Additionally, a quantitative assessment was performed using the workplace non-ventilation mode, saturated vapor pressure mode, and the European targeted risk assessment tool (ECETOC TRA Ver. 3.1 Chinese version) to evaluate substances (66 items in total) with exposure limit concentrations. Correlation analysis was conducted based on these results, and silver, nickel, and acetone were monitored in the working environment to validate the conservative nature of the exposure assessment methods employed.
Based on the aforementioned results, the semi-quantitative exposure assessment revealed that CCB is suitable for evaluating chemical exposure under the original operating conditions in the manufacturing process. The recommended exposure control measures provided by this tool can be considered based on these assessment results. SQRA, on the other hand, is capable of assessing exposure in controlled operating environments and conditions, but its current limitations include the lack of relevant auxiliary tools and the difficulty in obtaining certain parameters. This makes its application challenging without proper parameter selection.
Regarding the quantitative assessment models, the non-ventilation mode is suitable for workplaces characterized by short operation times, large volumes, and minimal chemical usage. However, it is prone to overestimating evaluated concentrations. The saturated vapor pressure mode, when considering ventilation conditions using the Rule of Ten (RoT), significantly reduces the likelihood of overestimating assessment results. The ECETOC TRA assessment tool (Ver. 3.1) is user-friendly, designed for ease of use, and capable of evaluating dust exposure concentrations. It takes into account operational parameters such as process characteristics, ventilation conditions, and exposure durations. While its calculation method may lack transparency, it proves to be the most suitable approach for the case study plant in this research, as it avoids excessive overestimation of assessment results. |
參考文獻 |
1. Alpizar, F., Backhaus, T., Decker, N., Eilks, I., Escobar-Pemberthy, N., Fantke, P., ... & Suzuki, N. (2019). UN environment global chemicals outlook II-from legacies to innovative solutions: Implementing the 2030 agenda for sustainable development.
2. Griffin, M. (2018). Decent work and digitalization in the chemical and pharmaceutical industries.
3. Baliga, B. J. (2010). Fundamentals of power semiconductor devices. Springer Science & Business Media.
4. Han, L., Liang, L., Kang, Y., & Qiu, Y. (2020). A review of SiC IGBT: models, fabrications, characteristics, and applications. IEEE Transactions on Power Electronics, 36(2), 2080-2093.
5. Khanna, V. K. (2004). Insulated gate bipolar transistor IGBT theory and design. John Wiley & Sons.
6. Ardebili, H., Zhang, J., & Pecht, M. G. (2018). Encapsulation technologies for electronic applications. William Andrew.
7. Wang, Y., Wu, Y., Jones, S., Dai, X., & Liu, G. (2014, August). Challenges and trends of high power IGBT module packaging. In 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) (pp. 1-7). IEEE.
8. Xing, K., Lee, F. C., & Boroyevich, D. (1998, February). Extraction of parasitics within wire-bond IGBT modules. In APEC′98 Thirteenth Annual Applied Power Electronics Conference and Exposition (Vol. 1, pp. 497-503). IEEE.
9. Yaqub, I., Li, J., & Johnson, C. M. (2015). Dependence of overcurrent failure modes of IGBT modules on interconnect technologies. Microelectronics Reliability, 55(12), 2596-2605.
10. Saito, T., Nishimura, Y., Momose, F., Morozumi, A., Tamai, Y., Mochizuki, E., & Takahashi, Y. (2014, September). Novel IGBT module design, material and reliability technology for 175 C continuous operation. In 2014 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 4367-4372). IEEE.
11. United Nations. (2021). Globally Harmonized System of Classification and Labelling of Chemicals(GHS) Ninth revised edition
12. Tan Kia Tang. (2016). Technical Seminar - WSH Risk Management Framework & Occupational Hygiene Development in Singapore
13. Charles B. Keil, Catherine E. Simmons, and T. Renee Anthony (2009). Mathematical Models for Estimating Occupational Exposure to Chemicals, 2nd edition. AIHA.
14. ECETOC.(2016). Targeted risk assessment tool. Can be accessed through http://www.ecetoc.org/tools/targeted-risk-assessment-tra/
15. ECETOC.(2004). Targeted Risk Assessment. Technical Report No. 93. Brussels, Belgium:European Centre for Ecotoxicology and Toxicology of chemicals (ECETOC).
16. Bredendiek-Kämper, S. (2001). Do EASE scenarios fit workplace reality? A validation study of the EASE model. Applied occupational and environmental hygiene, 16(2), 182-187.
17. Van Tongeren, M., Lamb, J., Cherrie, J. W., MacCalman, L., Basinas, I., & Hesse, S. (2017). Validation of lower tier exposure tools used for REACH: comparison of tools estimates with available exposure measurements. Annals of work exposures and health, 61(8), 921-938.
18. Franken, R., Kasiotis, K. M., Tsakirakis, A. N., Chartzala, I., Anastasiadou, P., Machera, K., ... & Spaan, S. (2020). Experimental Assessment of Inhalation and Dermal Exposure to Chemicals During Industrial or Professional Activities in Relation to the Performance of ECETOC TRA. Annals of Work Exposures and Health, 64(9), 944-958.
19. Riedmann, R. A., Gasic, B., & Vernez, D. (2015). Sensitivity analysis, dominant factors, and robustness of the ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5 occupational exposure models. Risk Analysis, 35(2), 211-225.
20. Dave Huizen, CIH. (2019). Exposure Assessments:A How to Guide
21. Emerson, R. W. (2015). Causation and Pearson′s correlation coefficient. Journal of visual impairment & blindness, 109(3), 242-244.
22. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.)
23. Loprieno, N. (1975). International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risk of chemicals to man:" relevance of data on mutagenicity". Mutation research, 31(3), 210.
24. Occupational Safety and Health Administration. (2002). OSHA Sampling and Analytical Methods, Metal and Metalloid Particulates (Atomic Absorption)–Method ID 121.
25. 職業安全衛生署,(2015),103年職業安全衛生署年報
26. 行政院勞工委員會勞工安全衛生研究所,(2010),各國職業安全衛生政策及研究趨勢探討
27. 于頡,(2014),直接液冷式IGBT模組於電動公車之散熱效能研究,國立交通大學機械工程學系碩士論文
28. 職業安全衛生署,(2016),勞工作業環境監測實施辦法,2016年11月02日修正
29. 職業安全衛生署,(2018),勞工作業場所容許暴露標準,2018年03月14日修正
30. 沈家鳳,(2016),我國安全衛生和其他先進國家安全衛生推動概述
31. 職業安全衛生署,(2019),職業安全衛生法,2019年04月26日修正
32. 職業安全衛生署,(2014),危害性化學品評估及分級管理辦法,2014年12月31日修正
33. 財團法人安全衛生技術中心,(2007),GHS電子報:國家標準CNS 15030「化學品分類及標示」與 CNS 6864「危險物運輸標示」簡介,2014年8月24日出刊第 002 期
34. 中華民國國家標準(CNS),(2022),國家標準(CNS)網路服務系統,www.cnsonline.com.tw
35. 蔡朋枝,(2020),化學品暴露危害風險評估與分級管理之原理及應用
36. 職業安全衛生署,(2017),化學品分級管理運用手冊_v2017
37. 職業安全衛生署,(2022),111年度危害性化學品分級管理說明會
38. 職業安全衛生署,(2015),危害性化學品評估及分級管理技術指引
39. 郭慶輝,(2022),勞動部勞動及職業安全衛生研究所公告:2016年5月23日公告;2022年7月25日更新 |