博碩士論文 106385602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.220.226.214
姓名 黛安娜(Diana Wahyu Hayati)  查詢紙本館藏   畢業系所 土木系營建管理博士班
論文名稱 探討營建成本因子群聚與規則之研究-以超高壓電塔為例
(EXPLORING VARIABLE CLUSTERING AND RULES FOR CONSTRUCTION COST: EMPIRICAL CASE STUDY FOR EXTRA-HIGH VOLTAGE TRANSMISSION TOWERS)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電力之於人們的日常生活日趨重要。為因應此需求,加快電力輸配電系統的發展刻不容緩,主要是特高壓(EHV)輸電鐵塔,因為特高壓鐵塔用於傳輸全臺灣的電力。為了建造此類鐵塔,須由台灣電力公司(TPC)招標,以便EPC公司可以執行施工。特高壓輸電鐵塔的建設主要分為兩個部分:建設特高壓鐵塔基礎並建設連接特高壓鐵塔。為了確定投標價格,台電對每個項目進行初步分析,以找到投標的最佳預測價格。然而,這個過程需要很長時間,並且根據塔的數量投注大量的人力。因此,本研究旨在確定預測特高壓鐵塔基礎項目成本所需的關鍵因數,從而減少準確預測上述成本所需之時間與人力。此外,本研究並研究變量的聚類特徵,以發現這些因數之間有趣的關係。為了達到這個結果,k-means clustering用於根據成本對數據集中的每個關鍵因數進行聚類。此外,基於規則的相關性同時採用Apriori 演算法尋找關鍵因數之間的有趣關係。分析發現,從找到的十三個關鍵變量中,單基樁(X2)、人工挖方(X5)與普通模板(X7)對特高壓鐵塔基礎造價的貢獻較大,表現在其他集群中成本最高的第二個集群中這三個因數的數量很大。對於基於規則的關聯,一共找到了1174條法則,其中選擇了102條法則,有2個前件和1個後件。從這 102 條法則中,有 62 條法則的可靠度為 1.000,從這 62 條規則中,找到了 6 條提升度最高的法則。所有102條規則的提升度皆高於1,這意味著每條規則都有其意義,6條最高提升度的規則為9.2,這些規則雖然支持度較低但可靠度高,這 6 條規則是其中102 條規則中最重要的。
摘要(英) The needs of electricity in our daily lives is becoming more and more essential. To accommodate such needs, the development of electrical transmission and distribution system requires to be sped up, mainly on the Extra High Voltage (EHV) Transmission Tower due to the importance of the tower to transmit power throughout the country. In order to construct such tower, Taiwan Power Company (TPC) has a possibility to announce a tender so that an EPC company can carry out the task. The construction of EHV Transmission Tower is divided into two categories: one is to construct the EHV Tower Foundation, and the other is to construct the EHV Tower and the connection. To determine the tender price, TPC has been doing initial analysis for each project to find the optimum forecast price for the tender. However, this process takes a long time and depending on the number of towers, this probably takes a large amount of manpower as well. Therefore, this study aims to determine the critical variables needed to forecast the cost for EHV Tower Foundation project, so that it can reduce the time and manpower needed to accurately predict the said cost. Other than that, this study also investigates the variable’s cluster characteristics, and discovers interesting relationship between the selected variables. To achieve the result, k-means clustering is applied to cluster each variable from the dataset based on the cost. Aside from that, rule-based association is also employed together with Apriori algorithm to find the interesting relationship between the selected variables. From the analysis, it is found that single pile foundation (X2), manual excavation (X5), and common formwork (X7) contribute greatly to the cost of the EHV Tower Foundation from the 13 selected variables found. This is also shown by the high amount of these three variables within the 2nd cluster which has the highest cost among the other clusters. As for rule-based association, with minimum support of 0.1, a total of 1174 rules are found, where 102 rules with 2 antecedents and 1 consequent are selected. From these 102 rules, 62 rules have 1.000 confidence, and from these 62 rules, 6 rules with the highest lift are found. All of the 102 rules have lift value more than one, which means every rule has its own significance with the highest value of lift of 9.2 which has lower number of support, but high confidence, making these 6 rules the most significant out of the other 96 rules.
關鍵字(中) ★ 輸配電系統
★ 預測
★ 數據集
★ 聚類
★ 因數
★ 基樁
★ 模板
★ 人工挖方
★ 可靠度
★ 提升度
★ 前件
★ 後件
關鍵字(英) ★ Transmission
★ Distribution
★ Forecast
★ Dataset
★ Clustering
★ Variables
★ Foundation
★ Formwork
★ Excavation
★ Confidence
★ Lift
★ Antecedents
★ Consequent
論文目次 ABSTRACT i
摘要 ii
ACKNOWLEDGMENT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
CHAPTER I INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 5
1.3 Research Objective 6
1.4 Research Scope and Limitation 6
1.5 Research Organization 7
CHAPTER II LITERATURE REVIEW 8
2.1 Extra High Voltage Transmission Tower 8
2.1.1 Power Supply System 8
2.1.2 Transmission Lines 9
2.1.3 Extra High Voltage Transmission Tower Foundation 11
2.1.4 Tower Foundation Design 14
2.2 Construction Cost 17
2.2.1 Construction Cost in General 17
2.2.2 Tower Base Cost 18
2.3 CLUSTERING 22
2.3.1 OVERVIEW OF CLUSTERING 22
2.3.2 Clustering Algorithm 23
2.3.3 Clustering Related Research 28
2.4 Rule-Based Association 30
2.4.1 Rule-Based Association Overview 30
2.4.2 Rule-Based Association Related Research 32
2.4.3 Apriori Algorithm 36
CHAPTER III DATA COLLECTION AND ANALYSIS 39
3.1 Data Collection 39
3.2 Analysis of basic data of iron tower foundation 40
3.3 The choice of the variable cost of the tower foundation 43
3.4 Impact Factor Screening 47
3.5 Clustering Methodology 50
3.6 Rule-Based Association Methodology 51
CHAPTER IV CLUSTERING RESULT 52
4.1 Clustering Histogram 52
4.2 Pairplot Clustering 57
4.3 Breakdown Per Variable 58
4.4 Clustering Result and Discussion 69
CHAPTER V RULE-BASED ASSOCIATION RESULT 75
5.1 Confidence 75
5.2 Support 88
5.3 Lift 91
5.4 Findings 95
CHAPTER VI CONCLUSION AND SUGGESTION 97
6.1 Summary 97
6.2 Suggestion 99
REFERENCES 100

參考文獻 [1] The Ministry of Economic Affairs. Four-year promotion plan for wind power generation of the Ministry of Economic Affairs. November 15, 2018.
[2] Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for K-means clustering. Pattern recognition letters, 25(11), 1293-1302.
[3] Redmond, S. J., & Heneghan, C. (2007). A method for initialising the K-means clustering algorithm using kd-trees. Pattern recognition letters, 28(8), 965-973.
[4] Steinley, D., & Brusco, M. J. (2007). Initializing K-means batch clustering: A critical evaluation of several techniques. Journal of Classification, 24(1), 99-121.
[5] Žalik, K. R. (2008). An efficient k′-means clustering algorithm. Pattern Recognition Letters, 29(9), 1385-1391.
[6] Taipower Transmission and Transformation Engineering Office, Construction Code Chapter 02562A Overhead Power Line Tower Foundation, May 27, 2013 Edition
[7] Taipower Work Instructions: "Iron Tower Design, Longitudinal Section and Plane Design".
[8] Taipower Transmission and Transformation Engineering Division North District Construction Division Work Instructions: "345kV Overhead Transmission Line Tower Single Pile Foundation Design".
[9] Estimated amount of base purchase price and its analysis work instructions for the North District Construction Division of Taipower Transmission and Transformation Engineering Division.
[10] Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. ACM SIGKDD explorations newsletter, 4(1), 65-75.
[11] Kijsipongse, E., & Suriya, U. (2012, May). Dynamic load balancing on GPU clusters for large-scale K-Means clustering. In 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE) (pp. 346-350). IEEE.
[12] Wang, X. Y., & Garibaldi, J. M. (2005, June). A comparison of fuzzy and non-fuzzy clustering techniques in cancer diagnosis. In Proceedings of the 2nd International Conference in Computational Intelligence in Medicine and Healthcare, BIOPATTERN Conference, Costa da Caparica, Lisbon, Portugal (Vol. 28).
[13] Girolami, M., & He, C. (2003). Probability density estimation from optimally condensed data samples. IEEE Transactions on pattern analysis and machine intelligence, 25(10), 1253-1264.
[14] Liu, T., Rosenberg, C., & Rowley, H. A. (2007, February). Clustering billions of images with large scale nearest neighbor search. In 2007 IEEE workshop on applications of computer vision (WACV′07) (pp. 28-28). IEEE.
[15] Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance. arXiv preprint arXiv:1002.2425.
[16] Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011). Density‐based clustering. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(3), 231-240.
[17] Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based clustering with R. Journal of Statistical Software, 91, 1-30.
[18] Cheng, W., Wang, W., & Batista, S. (2018). Grid-based clustering. In Data clustering (pp. 128-148). Chapman and Hall/CRC.
[19] Rani, P. (2017). A Survey on STING and CLIQUE Grid Based Clustering Methods. International Journal of Advanced Research in Computer Science, 8(5).
[20] Madhulatha, T. S. (2012). An overview on clustering methods. arXiv preprint arXiv:1205.1117.
[21] Chen, L., Shan, W., & Liu, P. (2021, December). Identification of concrete aggregates using K-means clustering and level set method. In Structures (Vol. 34, pp. 2069-2076). Elsevier.
[22] Afshoon, I., Miri, M., & Mousavi, S. R. (2021). Combining Kriging meta models with U-function and K-Means clustering for prediction of fracture energy of concrete. Journal of Building Engineering, 35, 102050.
[23] Shao, X., Ma, D., Liu, Y., & Yin, Q. (2017, November). Short-term forecast of stock price of multi-branch LSTM based on K-means. In 2017 4th International Conference on Systems and Informatics (ICSAI) (pp. 1546-1551). IEEE.
[24] Xu, Y., Yang, C., Peng, S., & Nojima, Y. (2020). A hybrid two-stage financial stock forecasting algorithm based on clustering and ensemble learning. Applied Intelligence, 50(11), 3852-3867.
[25] Fang, Z., & Chiao, C. (2021). Research on prediction and recommendation of financial stocks based on K-means clustering algorithm optimization. Journal of Computational Methods in Sciences and Engineering, 21(5), 1081-1089.
[26] Candelieri, A. (2017). Clustering and support vector regression for water demand forecasting and anomaly detection. Water, 9(3), 224.
[27] Ng, H. P., Ong, S. H., Foong, K. W. C., Goh, P. S., & Nowinski, W. L. (2006, March). Medical image segmentation using k-means clustering and improved watershed algorithm. In 2006 IEEE southwest symposium on image analysis and interpretation (pp. 61-65). IEEE.
[28] Nithya, N., Duraiswamy, K., & Gomathy, P. (2013). A survey on clustering techniques in medical diagnosis. International Journal of Computer Science Trends and Technology (IJCST), 1(2), 17-23.
[29] Chen, J. H., Wei, H. H., Chen, C. L., Wei, H. Y., Chen, Y. P., & Ye, Z. (2020). A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification. Journal of Air Transport Management, 82, 101743.
[30] Chen, J. H., Su, M. C., Zhao, Y. X., Hsieh, Y. J., & Chen, W. H. (2008). Application of SOMO Based Clustering in Building Renovation. International Journal of Fuzzy Systems, 10(3).
[31] Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. Knowledge discovery in databases, 229-238.
[32] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1996). Fast discovery of association rules. Advances in knowledge discovery and data mining, 12(1), 307-328.
[33] Zhao, Q., & Bhowmick, S. S. (2003). Association rule mining: A survey. Nanyang Technological University, Singapore, 135.
[34] Khurana, K., & Sharma, S. (2013). A comparative analysis of association rule mining algorithms. International Journal of Scientific and Research Publications, 3(5), 0.
[35] Girotra, M. Kanika Nagpal Saloni inocha Neha Sharma Comparative Survey on Association Rule Mining Algorithms. International Journal of Computer Applications, 0975-8887.
[36] Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2012). Data mining techniques and applications–A decade review from 2000 to 2011. Expert systems with applications, 39(12), 11303-11311.
[37] Lee, R. C. (1981). Clustering analysis and its applications. In Advances in information systems science (pp. 169-292). Springer, Boston, MA.
[38] Gordon, A. D. (1999). Classification. CRC Press.
[39] Freund, R. J., Wilson, W. J., & Sa, P. (2006). Regression analysis. Elsevier.
[40] Li, Y., Su, Z., Li, P., Li, Y., Johnson, N., Zhang, Q., & Ding, X. (2020). Association of symptoms with eating habits and food preferences in chronic gastritis patients: a cross-sectional study. Evidence-Based Complementary and Alternative Medicine, 2020.
[41] Nahar, J., Imam, T., Tickle, K. S., & Chen, Y. P. P. (2013). Association rule mining to detect factors which contribute to heart disease in males and females. Expert Systems with Applications, 40(4), 1086-1093.
[42] Wang, H. H., Chen, J. H., Arifai, A. M., & Gheisari, M. (2022). Exploring empirical rules for construction accident prevention based on unsafe behaviors. Sustainability, 14(7), 4058.
[43] Su, Y. M., Chen, J. H., Cheng, J. Y., Hsu, Y. T., & Huang, M. C. (2022). Rough-Set Based Association Rules toward Performance of High-Friction Road Markings. Journal of Transportation Engineering, Part B: Pavements, 148(2), 05022001.
[44] Chen, J. H., & Lin, J. Z. (2014). Prediction rules of the employees′expatriation willingness for engineering consulting companies. Journal of Marine Science and Technology, 22(2), 2.
[45] Abberger, K., Graff, M., Siliverstovs, B., & Sturm, J. E. (2018). Using rule-based updating procedures to improve the performance of composite indicators. Economic Modelling, 68, 127-144.
[46] Yang, L. H., Wang, S., Ye, F. F., Liu, J., Wang, Y. M., & Hu, H. (2021). Environmental investment prediction using extended belief rule-based system and evidential reasoning rule. Journal of Cleaner Production, 289, 125661.
[47] SatheeshKumar, M., Srinivasagan, K. G., & UnniKrishnan, G. (2022). A lightweight and proactive rule-based incremental construction approach to detect phishing scam. Information Technology and Management, 1-28.
[48] Mendez, J. A., Leon, A., Marrero, A., Gonzalez-Cava, J. M., Reboso, J. A., Estevez, J. I., & Gomez-Gonzalez, J. F. (2018). Improving the anesthetic process by a fuzzy rule based medical decision system. Artificial intelligence in medicine, 84, 159-170.
[49] Oad, K. K., DeZhi, X., & Butt, P. K. (2014). A fuzzy rule based approach to predict risk level of heart disease. Global Journal of Computer Science and Technology.
[50] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).
[51] Hegland, M. (2007). The apriori algorithm–a tutorial. Mathematics and computation in imaging science and information processing, 209-262.
[52] Yuan, X. (2017, March). An improved Apriori algorithm for mining association rules. In AIP conference proceedings (Vol. 1820, No. 1, p. 080005). AIP Publishing LLC.
[53] Sun, D., Teng, S., Zhang, W., & Zhu, H. (2007, August). An algorithm to improve the effectiveness of apriori. In 6th IEEE International Conference on Cognitive Informatics (pp. 385-390). IEEE.
[54] Jia, Y., Xia, G., Fan, H., Zhang, Q., & Li, X. (2012, October). An improved apriori algorithm based on association analysis. In 2012 Third International Conference on Networking and Distributed Computing (pp. 208-211). IEEE.
[55] Yulanda, R. D., Wahyuningsih, S., & Amijaya, F. D. T. (2019, July). Association rules with apriori algorithm and hash-based algorithm. In Journal of Physics: Conference Series (Vol. 1277, No. 1, p. 012048). IOP Publishing.
[56] Chen, Z., Cai, S., Song, Q., & Zhu, C. (2011, August). An improved Apriori algorithm based on pruning optimization and transaction reduction. In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 1908-1911). IEEE.
[57] Singh, J., Ram, H., & Sodhi, D. J. (2013). Improving efficiency of apriori algorithm using transaction reduction. International Journal of Scientific and Research Publications, 3(1), 1-4.
[58] Ye, Y., & Chiang, C. C. (2006, August). A parallel apriori algorithm for frequent itemsets mining. In Fourth International Conference on Software Engineering Research, Management and Applications (SERA′06) (pp. 87-94). IEEE.
[59] Chen, B., Haas, P., & Scheuermann, P. (2002, July). A new two-phase sampling based algorithm for discovering association rules. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 462-468).
[60] Bhat, B. A., Harish, S. V., & Geetha, M. (2018, December). A Dynamic Itemset Counting Based Two-Phase Algorithm for Mining High Utility Itemsets. In 2018 15th IEEE India Council International Conference (INDICON) (pp. 1-6). IEEE.
[61] Xu Yanzhang, "Application of Fuzzy Theory and Statistical Refining Model in Prediction of Road Engineering Price", Feng Chia University, Master Thesis, 2009.
[62] Chen , J.H., Hayati, D.W., Chou, C.C., Wei, H.H., Chen, Y.C. Smart cost estimation: Empirical case for extra-high voltage transmission towers
[63] Summerfield, M. (2010). Programming in Python 3: a complete introduction to the Python language. Addison-Wesley Professional.
[64] Devi, K., Kumar, J. S., Poovizhi, S., & Krishnan, M. Analytical study on diabetes prediction-using random forest classifier.
[65] Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow method. Accounting, Auditing and Finance, 1(1), 5-8.


指導教授 陳介豪 蘇木春 蘇育民(Jieh-Haur Chen Mu-Chun Su Yu-Min Su) 審核日期 2023-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明