博碩士論文 110323084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.118.10.37
姓名 林祥憲(LIN,SIANG-SIAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用倒傳遞神經網路整合基因演算法優化射出成型成品之體積收縮
(Optimizing volumetric shrinkage of injection molded part via hybrid BPNN and GA)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關
★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究★ 槍機卡榫模流分析參數最佳化之研究
★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-1以後開放)
摘要(中) 本研究利用倒傳遞神經網路整合基因演算法來建立射出成型的製程參數與成品品質之間的關係,並使用基因演算法來獲取最佳製程參數,達到減少成品之體積收縮的目的。首先利用模穴內的溫度與壓力傳感器來監測實驗過程中的熔膠狀態,將數據轉換成比容的形式,然後合併非均勻比容之指標及體積收縮的指標作為整體體積收縮的指標以及實驗計畫法的反應值,並對其進行資料標準化,接著使用此數據來訓練倒傳遞神經網路模型,再將訓練完成的模型作為基因演算法的適應函數,最後分別比較使用倒傳遞神經網路整合基因演算法以及使用反應曲面法和田口法所得到的優化結果之間的差異。
本研究的結果顯示,在神經網路為5-11-1的架構下得到驗證組之平均絕對百分比誤差為4.9%的模型,並且透過基因演算法後得知當料溫為207.86℃、保壓時間為12.6秒、一段保壓壓力為569.28 bar、二段保壓壓力為569.28 bar、三段保壓壓力為569.28 bar的時候為最佳參數,經過驗證實驗後得到0.02027的反應值,相比之下藉由反應曲面法與田口法優化後之驗證實驗的反應值為0.02032和0.02108。根據以上的研究結果表示,經由神經網路整合基因演算法優化後的製程參數可以降低比容之偏差,說明在本研究中神經網路整合基因演算法的優化能力更勝於反應曲面法及田口法。
摘要(英) This study utilizes the hybrid back propagation neural network (BPNN) and genetic algorithm (GA) to establish a relationship between process parameters and product quality of injection molded product. The main objective is to optimize the parameters in order to minimize the volumetric shrinkage of the product. First, temperature and pressure sensors within the mold are used to monitor the molten state during the experimental process. The collected data is then converted into specific volume values. Additionally, the combination of the index of non-uniform of specific volume and the index of volumetric shrinkage obtained through specific volume are regarded as an overall indicator of volumetric shrinkage and the response value of the design of experiments. After standardization, the back propagation neural network model is trained and employed as the fitness function for the genetic algorithm. Finally, the comparison of optimization is conducted among the hybrid back propagation neural network and genetic algorithm, the response surface method (RSM) as well as Taguchi method.
The results of this study indicate that the neural network model with a 5-11-1 architecture achieves an average absolute percentage error of 4.9% between prediction and measurement on the validation set. After applying the genetic algorithm for optimization, the optimal process parameters in this model are determined as follows: melt temperature of 207.86℃, packing time of 12.6 seconds, the first packing pressure of 569.28 bar, the second packing pressure of 569.28 bar, and the third packing pressure of 569.28 bar. The corresponding response value obtained from the optimal experiment using hybrid ANN and GA is 0.02027, which outperforms the response values of 0.02032 and 0.02108 obtained from the optimal experiments using the response surface methodology and Taguchi method, respectively.
These results demonstrate that the hybrid ANN and GA can reduce the deviation of the specific volume. Furthermore, it indicates the superior optimizing capability of the hybrid ANN and GA compared to response surface method and Taguchi method.
關鍵字(中) ★ 模穴內感測系統
★ 體積收縮
★ 倒傳遞神經網路
★ 基因演算法
關鍵字(英) ★ In-mold measuring system
★ Volumetric shrinkage
★ Back propagation neural network
★ Genetic algorithm
論文目次 目錄
摘要 i
Abstract iii
致謝 v
圖目錄 ix
表目錄 xi
一、 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的 6
二、 研究方法 7
2-1 比容計算公式 7
2-2 收縮量化公式 8
2-3 射出成型參數組 9
2-4 資料標準化(Data Standardization) 13
2-5 相關係數(correlation coefficient) 15
2-6 類神經網路 18
2-7 基因演算法 27
2-7-1 編碼 27
2-7-2 建立初始族群 29
2-7-3 套用適應函數並得到適應值 30
2-7-4 標準確認 30
2-7-5 選擇 31
2-7-6 交配 32
2-7-7 突變 32
三、 研究設備 34
3-1 射出成型設備 34
3-2 模溫機 37
3-3 烘料機 39
3-4 量測設備 41
3-4-1 壓力傳感器 41
3-4-2 溫度傳感器 43
3-4-3 成型監控系統 45
3-5 材料 45
3-6 實驗模型 46
四、 結果與討論 47
4-1 BPNN目標值 47
4-2 相關係數分析 50
4-3 BPNN訓練與結果 53
4-4 基因演算法 55
五、 結論與未來展望 67
5-1 結論 67
5-2 未來展望 68
參考文獻 71
參考文獻 [1] M. Berry and N. Schott, "Process monitoring and process control: an overview," Applied Plastics Engineering Handbook, pp. 377-393, 2017.
[2] B. Pramujati, R. Dubay, and C. Samaan, "Cavity pressure control during cooling in plastic injection molding," Advances in Polymer Technology: Journal of the Polymer Processing Institute, vol. 25, no. 3, pp. 170-181, 2006.
[3] J.-S. Gim, J.-S. Tae, J.-H. Jeon, J.-H. Choi, and B.-O. Rhee, "Detection method of filling imbalance in a multi-cavity mold for small lens," International Journal of Precision Engineering and Manufacturing, vol. 16, pp. 531-535, 2015.
[4] T. Ageyeva, S. Horváth, and J. G. Kovács, "In-mold sensors for injection molding: On the way to industry 4.0," Sensors, vol. 19, no. 16, p. 3551, 2019.
[5] S. Biehl, N. Paetsch, E. Meyer-Kornblum, and G. Brauer, "Wear resistenat thin film sensor system for industrial applications," Int. J. Instrum. Meas, vol. 1, pp. 6-11, 2016.
[6] M. R. Groleau and R. Groleau, "Comparing Cavity Pressure Sensor Technologies Using In-Mold Data (446)," in ANTEC-CONFERENCE PROCEEDINGS-, 2002, vol. 3: UNKNOWN, pp. 3400-3404.
[7] P. Zhao et al., "Intelligent injection molding on sensing, optimization, and control," Advances in Polymer Technology, vol. 2020, pp. 1-22, 2020.
[8] C. Abeykoon, P. J. Martin, A. L. Kelly, and E. C. Brown, "A review and evaluation of melt temperature sensors for polymer extrusion," Sensors and actuators A: Physical, vol. 182, pp. 16-27, 2012.
[9] J.-Y. Chen, K.-J. Yang, and M.-S. Huang, "Online quality monitoring of molten resin in injection molding," International Journal of Heat and Mass Transfer, vol. 122, pp. 681-693, 2018.
[10] S. Farahani, V. Khade, S. Basu, and S. Pilla, "A data-driven predictive maintenance framework for injection molding process," Journal of Manufacturing Processes, vol. 80, pp. 887-897, 2022.
[11] J. Gim and B. Rhee, "Novel analysis methodology of cavity pressure profiles in injection-molding processes using interpretation of machine learning model," Polymers, vol. 13, no. 19, p. 3297, 2021.
[12] W.-C. Chen, G.-L. Fu, P.-H. Tai, and W.-J. Deng, "Process parameter optimization for MIMO plastic injection molding via soft computing," Expert Systems with Applications, vol. 36, no. 2, pp. 1114-1122, 2009.
[13] W.-C. Chen, P.-H. Tai, M.-W. Wang, W.-J. Deng, and C.-T. Chen, "A neural network-based approach for dynamic quality prediction in a plastic injection molding process," Expert systems with Applications, vol. 35, no. 3, pp. 843-849, 2008.
[14] F. Yin, H. Mao, L. Hua, W. Guo, and M. Shu, "Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding," Materials & design, vol. 32, no. 4, pp. 1844-1850, 2011.
[15] Y. Cao, X. Fan, Y. Guo, S. Li, and H. Huang, "Multi-objective optimization of injection-molded plastic parts using entropy weight, random forest, and genetic algorithm methods," Journal of Polymer Engineering, vol. 40, no. 4, pp. 360-371, 2020.
[16] X.-P. Li, G.-Q. Zhao, Y.-J. Guan, and M.-X. Ma, "Optimal design of heating channels for rapid heating cycle injection mold based on response surface and genetic algorithm," Materials & Design, vol. 30, no. 10, pp. 4317-4323, 2009.
[17] C. Shen, L. Wang, and Q. Li, "Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method," Journal of materials processing technology, vol. 183, no. 2-3, pp. 412-418, 2007.
[18] F. Yin, H. Mao, and L. Hua, "A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters," Materials & Design, vol. 32, no. 6, pp. 3457-3464, 2011.
[19] R. Chang, C. Chen, and K. Su, "Modifying the tait equation with cooling‐rate effects to predict the pressure–volume–temperature behaviors of amorphous polymers: Modeling and experiments," Polymer Engineering & Science, vol. 36, no. 13, pp. 1789-1795, 1996.
[20] C. Xiao, J. Ye, R. M. Esteves, and C. Rong, "Using Spearman′s correlation coefficients for exploratory data analysis on big dataset," Concurrency and Computation: Practice and Experience, vol. 28, no. 14, pp. 3866-3878, 2016.
[21] M. W. Gardner and S. Dorling, "Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences," Atmospheric environment, vol. 32, no. 14-15, pp. 2627-2636, 1998.
[22] E. G. Learned-Miller, "Introduction to supervised learning," I: Department of Computer Science, University of Massachusetts, p. 3, 2014.
[23] R. Hecht-Nielsen, "Kolmogorov’s mapping neural network existence theorem," in Proceedings of the international conference on Neural Networks, 1987, vol. 3: IEEE Press New York, NY, USA, pp. 11-14.
[24] J. Wang, "Digital image encryption algorithm design based on genetic hyperchaos," International Journal of Optics, vol. 2016, 2016.
[25] B. Rajakumar and A. George, "APOGA: An adaptive population pool size based genetic algorithm," AASRI Procedia, vol. 4, pp. 288-296, 2013.
[26] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O′Reilly Media, Inc.", 2022.
[27] H. Motoda and H. Liu, "Feature selection, extraction and construction," Communication of IICM (Institute of Information and Computing Machinery, Taiwan), vol. 5, no. 67-72, p. 2, 2002.
[28] M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," IEEE Transactions on evolutionary computation, vol. 1, no. 1, pp. 53-66, 1997.
[29] A. Alturki, O. Bchir, and M. M. Ben Ismail, "Depth-Adaptive Deep Neural Network Based on Learning Layer Relevance Weights," Applied Sciences, vol. 13, no. 1, p. 398, 2022.
[30] M. Shafay, R. W. Ahmad, K. Salah, I. Yaqoob, R. Jayaraman, and M. Omar, "Blockchain for deep learning: review and open challenges," Cluster Computing, vol. 26, no. 1, pp. 197-221, 2023.
指導教授 鍾禎元(Chen-Yuan Chung) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明