參考文獻 |
[1] 趙中興,「燃料電池基礎」,全華圖書,2008 。
[2] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[3] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[4] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” J. Applied Electrochemistry, 32, pp. 339–347, 2002.
[5] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, 122, pp. 9-18, 2003.
[6] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, 161, pp. 1012-1022, 2006.
[7] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, 250, pp. 21-29, 2014.
[8] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., 37, pp. 1568–78, 2008.
[9] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, 26, no. 10, pp. 1103–1108, 2001.
[10] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, 7, pp. 269-278, 2007.
[11] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, 183, pp. 682-686, 2008.
[12] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[13] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, pp. 573-578, 1987.
[14] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., 65, pp. 581-589, 2010.
[15] J. Basbus, M. Arce, H. Troiani, Q. Su, H. Wang, A. Caneiro, L. Mogni, “Study of BaCe0.4Zr0.4Y0.2O3-δ/BaCe0.8Pr0.2O3-δ (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC)”, International Journal of Hydrogen Energy, Vol. 45, Issue 8, pp. 5481-5490, 2020.
[16] P. C. Cheng, S. W. Lee, K. R. Lee, N. Setiawan, M. Bhavanari, C. T. Shen, N. Osman, C. J. Tseng, “Carbon resistant Ni1-xCux-BCZY anode for methane-fed protonic ceramic fuel cell”, International Journal of Hydrogen Energy, Vol. 48, Issue 30, pp. 11455-11462, 2023.
[17] Y. Bu, S. Joo, Y. Zhang, Y. Wang, D. Meng, X. Ge, G. Kim, “A highly efficient composite cathode for proton-conducting solid oxide fuel cells”, Journal of Power Sources, Vol. 451(1), pp. 227812, 2020.
[18] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Rogerge, A. Rodrigues, “Parametric modelling of the performance of a 5kW proton-exchange membrane fuel cell stack”, Journal of Power Sources, Vol. 49, pp.349-356, 1994.
[19] R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, P. R. Roberge, “Development and application of a generalised steady-state electrochemical model for a PEM fuel cell”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 173-180, 2000.
[20] I. J. Baschuk, X. Li, “Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 181-196, 2000.
[21] D. Yu, S. Yuvarajan, “A NOVEL CIRCUIT MODEL FOR PEM FUEL CELLS”, published in Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004.
[22] R. Wu, Q. Liao, X. Zhu, H. Wang, “Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell”, International Journal of Hydrogen Energy, Vol. 37, Issue 15, pp. 11255-11267, 2012.
[23] M. Aghighi, M. A. Hoeh, W. Lehnert, G. Merle, J. Gostick, “Simulation of a Full Fuel Cell Membrane Electrode Assembly Using Pore Network Modeling”, Journal of The Electrochemical Society, Vol. 163(5), pp. F384-392, 2016.
[24] H. Liu, G. Zhang, Z. Yu, D. Li, G. Wang, C. Wang, S. Bai, G. Li, “Research on Liquid Water Distribution in PEMFC Cathode Porous Media”, International Journal of Electrochemical Science, Vol. 15, pp. 6717-6736, 2020.
[25] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., 20, pp. 430-442, 2013.
[26] C. Zamfirescu and I. Dincer, “Thermodynamic performance analysis and optimization of a SOFC-H + system,” Thermochimica Acta, 486, pp. 32-40, 2009.
[27] H. Xu, Z. Dang, and B. F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., 50, no. 1, pp. 1101-1110, 2013.
[28] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” 158, pp. 1290–1305, 2006.
[29] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[30] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, 277, pp. 292–303, Mar. 2015.
[31] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, 223, pp. 9–17, 2013.
[32] A. Fernandes, T. Woudstra, A. V. Wijk, L. Verhoef, P. V. Aravind, “Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs”, Applied Energy, Vol. 173, pp. 13-28, 2016.
[33] M. Aghaie, M. Mehrpooya, F. Pourfayaz, “Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration”, Energy Conversion and Management, Vol. 124, pp. 141-154, 2016.
[34] B. Eisavi, A. Chitsaz, J. Hosseinpour, F. Ranjbar, “Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems”, Energy Conversion and Management, Vol. 168(15), pp. 343-356, 2018.
[35] G. D. Marcoberardino, L. Roses, G. Manzolini, “Technical assessment of a micro-cogeneration system based on polymer electrolyte membrane fuel cell and fluidized bed autothermal reformer”, Applied Energy, Vol. 162, pp. 231-244, 2016.
[36] A. L. Dicks, R. G. Fellows, C. M. Mescal, C. Seymour, “A study of SOFC–PEM hybrid systems”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 501-506, 2000.
[37] Z. Wu, Z. Zhang, M. Ni, “Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses”, Energy Conversion and Management, Vol. 174(15), pp. 802-813, 2018.
[38] H. R. Kim, M. H. Seo, J. H. Ahn, T. S. Kim, “Thermodynamic design and analysis of SOFC/PEMFC hybrid systems with cascade effects: A perspective on complete carbon dioxide capture and high efficiency”, Energy Reports, Vol. 9, pp. 2335-2347, 2023.
[39] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[40] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., 47, no. 7, pp. 599–607, 2010.
[41] Sasmoko, S. W. Lee, M. Bhavanari, W. Wijayanti, I. N. G. Wardana, A. A. Azhari, C. J. Tseng, “Thermodynamic Analysis of Three Internal Reforming Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems”, Applied Sciences, Vol. 12, Issue 21, pp. 11140, 2022.
[42] E. H. Wang, H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao, Q. H. Mu, “Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery”, Energy, Vol. 36, Issue 5, pp. 3406-3418, 2011.
[43] J. H. Zhang, L. B. Lei, F. Y. Zhao, M. Ni, F. Chen, “Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage”, Journal of Power Sources, Vol. 400, ppp. 333-340, 2018.
[44] M. Chen, M. Zhou, Z. Liu, J. Liu, “A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid”, Ceramics International, Vol. 48, Issue 12, pp. 17208-17216, 2022.
[45] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte”, Solid State Ionics, Vol. 181, Issue 35-36, pp. 1568-1576, 2010.
[46] V. Menon, A.Banerjee, J. Dailly, O. Deutschmann, “Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming”, Applied Energy, Vol. 149, pp. 161-175.
[47] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[48] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005. |