博碩士論文 106386602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.138.116.1
姓名 段氏金娟(Doan Thi Kim Quyen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 合成改質含胺基奈米纖維素與二氧化矽混合膠體應用吸附CO2之評估研究
(Facile synthesis of amine-modified cellulose nanocrystal/silica hybrid aerogel for CO2 adsorption)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-15以後開放)
摘要(中) 本研究透過合成改質含胺基奈米纖維素與二氧化矽混合膠體,並進一步評估吸附CO2的可行性。該材料製備過程首先對棉布廢棄物(cotton cloth waste, CCW)進行鹼處理和脫色處理,再使用鹽酸進行酸水解處理後得到微晶纖維素(microcrystalline cellulose, MCC),接下來使用硫酸水解和反應曲面法(response surface methodology, RSM)將微晶纖維素轉換為奈米纖維素(cellulose nanocrystal, CNC)。反應曲面法主要透過Box-Behnken design (BBD)設計三個獨立變數,分別為硫酸濃度(58¬64%)、水解溫度(50-70℃)和水解時間(40¬80分鐘),然後使用溶膠凝膠法(sol-gel method)在常溫條件下進行乾燥,將奈米纖維素與二氧化矽合成為混合膠體(CNC/silica hybrid aerogel, CSA),接著浸入聚乙烯亞胺(Polyethyleneimine, PEI)提高CO2吸附效果,最後探討溫度(30¬120℃)和PEI濃度等參數對CO2吸附的影響。
根據二次迴歸模型的判定係數顯示,對產物產率、結晶度指數(crystallinity index, CI)和平均粒徑的預測具有非常高的可靠性,顯示獨立變數和產物改變有顯著的相關性,而本研究發現當硫酸濃度為61.27 wt.%、水解溫度及水解時間分別在50℃及56分鐘時,具有提取CNC的最佳酸水解條件,此時CNC的產率、CI及平均粒徑分布則分別為44.57%、86.29%和160 nm,同時符合膠體製備的要求,具有成為CO2吸附劑的潛力。

在CO2吸附的試驗結果顯示,最佳的吸附劑 (CSA¬PE150) 在70℃和50 wt%的PEI濃度條件下具有最佳的CO2吸附能力,達到2.35 mmol g-1,透過多種吸附動力學模型解釋CSA-PEI50的吸附機制發現,Avrami動力學模型對CSA-PEI在不同溫度和PEI濃度下的CO2吸附行為最相符,反應階數介於0.352¬0.613之間,均方根誤差則可忽略不計。透過速率控制動力學(rate-limiting kinetic)分析結果顯示,膜擴散(film diffusion)和粒子間擴散阻力(intraparticle diffusion resistance)會影響吸附速率隨後控制吸附的過程,最後針對CNC進行十次的吸附¬脫附試驗中,發現CSA-PEI50具有非常高的穩定性,本研究證明CSA-PEI50具有成為捕捉燃燒後CO2吸附劑的潛力。
摘要(英) The aim of the work is to synthesize and evaluate performance of amine-modified cellulose nanocrystal/ silica hybrid aerogel for CO2 adsorption. Firstly, cotton cloth waste (CCW) was subjected to alkali and decoloring treatments, and subsequent hydrochloric acid hydrolysis to obtain microcrystalline cellulose (MCC). The resulted MCC was furthered converted into cellulose nanocrystal (CNC) using sulfuric acid hydrolysis and response surface methodology (RSM). The RSM based on the Box-Behnken design (BBD) was designed with three independent variables: including sulfuric acid concentration (58-64 wt%), hydrolysis temperature (50-70 oC), and hydrolysis time (40-80 min). Then CNC/silica hybrid aerogel (CSA) was synthesized by hybridization of CNC and sodium silicate hybridization based on the one-step sol-gel method under atmospheric drying. Polyethyleneimine (PEI) was impregnated on CSA to improve CO2 adsorption performance. The parameters governing CO2 adsorption performance on CSA-PEI, such as temperatures (30-120 oC) and PEI concentrations (40-60 wt%), were investigated systematically.
According to the analyzed regression models, the predicted quadratic polynomial models for yield, crystallinity index (CI), and average particle size exhibited high reliability, corresponding to the close interaction between independent variables and responses. The study found the optimum acid hydrolysis conditions for CNC extraction were 61.27 wt%, 50 oC, and 56 min. At the optimal points, the results of experimental CNC yield, CI, and particle size distribution were 44.57%, 86.29%, and 160 nm respectively. The obtained CNC properties met the required specifications for aerogel preparation as an adsorbent for CO2 adsorption process.
For the CO2 adsorption performance, the optimum adsorbent (CSA-PEI50) exhibited an excellent CO2 adsorption capacity of 2.35 mmol g-1 at 70 oC and a PEI concentration of 50 wt%. The adsorption mechanism of CSA-PEI50 was elucidated by analyzing many adsorption kinetic models. The CO2 adsorption behaviors of CSA-PEI at various temperatures and PEI concentrations had the goodness of fit with the Avrami kinetic model, which can correspond to the multiple adsorption mechanism. The Avrami model also showed fractional reaction orders in a range of 0.352-0.613, and the root mean square error was negligible. Moreover, the rate-limiting kinetic analysis showed that film diffusion and intraparticle diffusion resistances controlled the CO2 adsorption process. The CSA-PEI50 also exhibited excellent stability after ten adsorption-desorption cycles. This work proved that CSA-PEI was a potential adsorbent in post-combustion CO2 capture.
關鍵字(中) ★ 奈米纖維素
★ 二氧化矽
★ 混合膠體
★ CO2吸附
★ 胺改質
★ 吸附動力學
關鍵字(英) ★ Cellulose nanocrystal
★ silica
★ hybrid aerogel
★ CO2 adsorption
★ amine modification
★ adsorption kinetic
論文目次 Table of Contents

摘要 i
Abstract iii
Acknowledgements v
List of Tables x
List of Figures xii
Explanation of acronyms xvii
Chapter 1 Introduction 1
Chapter 2 Literature Review 7
2-1 Cellulose nanocrystal (CNC) 7
2-1-1 Cellulose structure and CNC 7
2-1-2 Properties of CNC 10
2-2 Preparation of CNC 13
2-2-1 Feedstocks for CNC preparation 13
2-2-2 Extraction of cellulose from lignocellulosic sources 17
2-2-3 CNC preparation using sulfuric acid hydrolysis 20
2-2-4 Response surface methodology in optimization of CNC extraction 39
2-3 Application of CNC 46
2-4 Synthesis of CNC-Silica (CNC-Si) hybrid aerogel 47
2-4-1 Cellulose-based hybrid aerogel 47
2-4-2 Fabrication approach of CNC-Si hybrid aerogel 50
2-4-2-1 Gelation process 51
2-4-2-2 Drying method 52
2-4-2-3 Amino group-surface functionalization 55
2-5 Properties of amino-functionalized CNC-Si hybrid aerogel 59
2-5-1 Density and porosity 59
2-5-2 Morphological structure 61
2-5-3 Textural structure 62
2-5-4 Other properties 63
2-6 Important parameters controlling CO2 adsorption capacity of amino-functionalized CNC-Si hybrid aerogel 64
2-6-1 Effect of textural properties 64
2-6-2 Effect of temperature 65
2-6-3 Effect of humidity 67
2-6-4 Effect of amine contents and amine types 68
2-6-5 Other adsorption conditions 70
2-7 Theoretical study of CO2 adsorption kinetic 70
Chapter 3 Materials and Methods 76
3-1 Materials 76
3-2 Cellulose nanocrystal (CNC) preparation process 76
3-2-1 Extraction process of microcrystalline cellulose (MCC) 76
3-2-2 Preparation process of CNC 77
3-3 Optimization process of CNC extraction 78
3-4 Preparation of PEI-modified CNC/ silica aerogel (CSA) material 81
3-4-1 CSA preparation procedure 81
3-4-2 PEI-modified CSA preparation 82
3-5 Characterization methods 82
3-5-1 Proximate and ultimate analysis of CCW 82
3-5-2 Chlorine content 84
3-5-3 Functional group analysis 84
3-5-5 Zeta potential 85
3-5-6 Morphological examination 85
3-5-7 Elemental composition 85
3-5-8 Dynamic rheological properties 85
3-5-9 Pore structure analysis 86
3-5-10 Crystalline structure analysis 86
3-6 Yield and sulfate group density calculation 87
3-7 CO2 adsorption process 87
3-7-1 CO2 adsorption measurement 87
3-7-2 CO2 adsorption kinetic 88
Chapter 4 Results and Discussion 91
4-1 Characterization of MCC extracted from CCW 91
4-1-1 Proximate and ultimate analysis of CCW 91
4-1-2 MCC yield and elemental compositions 92
4-1-3 Morphological structure 93
4-1-4 Functional group analysis 94
4-1-5 Crystalline structure 95
4-2 CNC characterization from the Box-Behnken design 96
4-2-1 CNC yield 96
4-2-4 Chemical structures 99
4-2-5 Crystallinity analysis 100
4-2-6 Thermostability properties 103
4-3 Regression model analysis of CNC extraction process 105
4-3-1 Yield model development 105
4-3-2 CI model development 109
4-3-3 Average particle size model development 111
4-4 Analysis of interaction effects 114
4-4-1 Interaction effects on CNC yield 114
4-4-3 Interaction effects on average particle size 117
4-5 Optimization analysis 118
4-6 Characteristics of CNC/si gel, CSA-x and CSA-PEI-y samples 121
4-6-1 Rheological property of CNC/Si gel 121
4-6-2 Morphological structure of CSA and CSA-PEI50 samples 122
4-6-3 Thermostability analysis 125
4-6-4 Pore structure analysis 126
4-7 CO2 adsorption performance 129
4-7-1 Effect of CNC to silica ratio 129
4-7-2 Effect of adsorption temperatures and PEI contents 130
4-8 CO2 adsorption kinetic 133
4-8-1 Apparent kinetic analysis 133
4-8-2 Diffusional mass transfer analysis 137
4-9 CO2 adsorption-desorption cycles 141
Chapter 5 Conclusions and Recommendations 144
5-1 Conclusions 144
5-2 Recommendations 146
References 147
Appendix xiii
Publication list xxxv
參考文獻 Abu-Thabit, N.Y., Judeh, A.A., Hakeem, A.S., Ul-Hamid, A., Umar, Y., Ahmad, A., 2020. Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). International Journal of Biological Macromolecules 155, 730-739.
Abushammala, H., Krossing, I., Laborie, M.-P., 2015. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydrate Polymers 134, 609-616.
Agenda, G.F., 2017. Pulse of the fashion industry. Global fashion agenda & the boston consulting group.
Ahmad, H., Anguilano, L., Fan, M., 2022. Microstructural architecture and mechanical properties of empowered cellulose-based aerogel composites via TEMPO-free oxidation. Carbohydrate Polymers 298, 120117.
Akhlamadi, G., Goharshadi, E.K., 2021. Sustainable and superhydrophobic cellulose nanocrystal-based aerogel derived from waste tissue paper as a sorbent for efficient oil/water separation. Process Safety and Environmental Protection 154, 155-167.
Alhwaige, A.A., Ishida, H., Qutubuddin, S., 2016. Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites. ACS Sustainable Chemistry & Engineering 4, 1286-1295.
Amin, K.N.M., Hosseinmardi, A., Martin, D.J., Annamalai, P.K., 2022. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid. Journal of Bioresources and Bioproducts 7, 99-108.
Andrews, M.P., Morse, T., 2019. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced. Google Patents.
Ansari, M.O., Khan, A.A.P., Ansari, M.S., Khan, A., Kulkarni, R.M., Bhamare, V.S., 2021. Aerogel and its composites: Fabrication and properties, Advances in Aerogel Composites for Environmental Remediation. Elsevier, pp. 1-17.
Azani, N.F.S.M., Haafiz, M.K.M., Zahari, A., Poinsignon, S., Brosse, N., Hussin, M.H., 2020. Preparation and characterizations of oil palm fronds cellulose nanocrystal (OPF-CNC) as reinforcing filler in epoxy-Zn rich coating for mild steel corrosion protection. International Journal of Biological Macromolecules 153, 385-398.
Babiarczuk, B., Lewandowski, D., Szczurek, A., Kierzek, K., Meffert, M., Gerthsen, D., Kaleta, J., Krzak, J., 2020. Novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol-gel process and phase separation. The Journal of Supercritical Fluids 166, 104997.
Bai, G., Han, Y., Du, P., Fei, Z., Chen, X., Zhang, Z., Tang, J., Cui, M., Liu, Q., Qiao, X., 2019. Polyethylenimine (PEI)-impregnated resin adsorbent with high efficiency and capacity for CO2 capture from flue gas. New Journal of Chemistry 43, 18345-18354.
Begag, R., Krutka, H., Dong, W., Mihalcik, D., Rhine, W., Gould, G., Baldic, J., Nahass, P., 2013. Superhydrophobic amine functionalized aerogels as sorbents for CO2 capture. Greenhouse Gases: Science and Technology 3, 30-39.
Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., Trapalis, C., 2009. Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. Journal of Hazardous Materials 170, 836-844.
Bondancia, T.J., Batista, G., de Aguiar, J., Lorevice, M.V., Cruz, A.J., Marconcini, J.M., Mattoso, L.H., Farinas, C.S., 2022. Cellulose nanocrystals from sugar cane bagasse using organic and/or inorganic acids: techno-economic analysis and life cycle assessment. ACS Sustainable Chemistry & Engineering 10, 4660-4676.
Brito, B.S., Pereira, F.V., Putaux, J.-L., Jean, B., 2012. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19, 1527-1536.
Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L., 2012. Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angewandte Chemie 124, 2118-2121.
Chakraborty, I., Rongpipi, S., Govindaraju, I., Mal, S.S., Gomez, E.W., Gomez, E.D., Kalita, R.D., Nath, Y., Mazumder, N., 2022. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microscopy Research and Technique 85, 1990-2015.
Chen, B., Zheng, Q., Zhu, J., Li, J., Cai, Z., Chen, L., Gong, S., 2016. Mechanically strong fully biobased anisotropic cellulose aerogels. RSC advances 6, 96518-96526.
Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U.P., Zhu, J., 2015. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753-1762.
Chen, X., Liu, H., Zheng, Y., Zhai, Y., Liu, X., Liu, C., Mi, L., Guo, Z., Shen, C., 2019. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Applied Materials & Interfaces 11, 42594-42606.
Chen, Y.M., Zhang, L., Yang, Y., Pang, B., Xu, W.H., Duan, G.G., Jiang, S.H., Zhang, K., 2021a. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Advanced Materials 33.
Chen, Y.X., Sepahvand, S., Gauvin, F., Schollbach, K., Brouwers, H.J.H., Yu, Q., 2021b. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Construction and Building Materials 293, 123289.
Cheng, M., Qin, Z., Chen, Y., Hu, S., Ren, Z., Zhu, M., 2017a. Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustainable Chemistry & Engineering 5, 4656-4664.
Cheng, M., Qin, Z., Chen, Y., Liu, J., Ren, Z., 2017b. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24, 3243-3254.
Choi, W., Park, J., Kim, C., Choi, M., 2021. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture. Chemical Engineering Journal 408, 127289.
Coelho, C.C.d.S., Silva, R.B.S., Carvalho, C.W.P., Rossi, A.L., Teixeira, J.A., Freitas-Silva, O., Cabral, L.M.C., 2020. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules 159, 1048-1061.
Csiszar, E., Kalic, P., Kobol, A., de Paulo Ferreira, E., 2016. The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrasonics Sonochemistry 31, 473-480.
Csiszár, E., Nagy, S., 2017. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydrate Polymers 174, 740-749.
Cui, S., Cheng, W., Shen, X., Fan, M., Russell, A.T., Wu, Z., Yi, X., 2011a. Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ. Sci. 4, 2070-2074.
Cui, S., Cheng, W.W., Shen, X.D., Fan, M.H., Russell, A., Wu, Z.W., Yi, X.B., 2011b. Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ. Sci. 4, 2070-2074.
Cui, S., Zhang, S., Ge, S., Xiong, L., Sun, Q., 2016. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products 83, 346-352.
Dai, H., Ou, S., Huang, Y., Huang, H., 2018. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25, 1743-1756.
Danmaliki, G.I., Saleh, T.A., Shamsuddeen, A.A., 2017. Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon. Chemical Engineering Journal 313, 993-1003.
de Carvalho Benini, K.C.C., Voorwald, H.J.C., Cioffi, M.O.H., Rezende, M.C., Arantes, V., 2018. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers 192, 337-346.
de Figueirêdo, M.C.B., de Freitas Rosa, M., Ugaya, C.M.L., de Souza, M.d.S.M., da Silva Braid, A.C.C., de Melo, L.F.L., 2012. Life cycle assessment of cellulose nanowhiskers. Journal of Cleaner Production 35, 130-139.
Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T., 2015. Cellulose–silica aerogels. Carbohydrate Polymers 122, 293-300.
Dervin, S., Lang, Y., Perova, T., Hinder, S.H., Pillai, S.C., 2017. Graphene oxide reinforced high surface area silica aerogels. Journal of Non-Crystalline Solids 465, 31-38.
DeVoy, J.E., Congiusta, E., Lundberg, D.J., Findeisen, S., Bhattacharya, S., 2021. Post-consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Management 136, 303-309.
Dilamian, M., Noroozi, B., 2021. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydrate Polymers 251, 117016.
Doan, T.K.Q., Chiang, K.Y., 2022. Characteristics and kinetics study of spherical cellulose nanocrystal extracted from cotton cloth waste by acid hydrolysis. Sustainable Environment Research 32, 1-14.
Dochia, M., Sirghie, C., Kozłowski, R.M., Roskwitalski, Z., 2012. 2 - Cotton fibres, in: Kozłowski, R.M. (Ed.), Handbook of Natural Fibres. Woodhead Publishing, pp. 11-23.
Doh, H., Lee, M.H., Whiteside, W.S., 2020. Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocolloids 102, 105542.
Dong, S., Bortner, M.J., Roman, M., 2016. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Industrial Crops and Products 93, 76-87.
Du, H., Liu, C., Mu, X., Gong, W., Lv, D., Hong, Y., Si, C., Li, B., 2016. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23, 2389-2407.
Du, H., Parit, M., Wu, M., Che, X., Wang, Y., Zhang, M., Wang, R., Zhang, X., Jiang, Z., Li, B., 2020. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. Journal of Hazardous Materials 400, 123106.
Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N., Capadona, J., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., 2010. Current international research into cellulose nanofibres and nanocomposites. Journal of materials science 45, 1-33.
Feng, J., Le, D., Nguyen, S.T., Tan Chin Nien, V., Jewell, D., Duong, H.M., 2016. Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 506, 298-305.
Feng, J., Nguyen, S.T., Fan, Z., Duong, H.M., 2015. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal 270, 168-175.
Ferreira, P.F., Pereira, A.L., Rosa, M.F., de Santiago-Aguiar, R.S., 2022. Lignin-rich cellulose nanocrystals from coir fiber treated with ionic liquids: Preparation and evaluation as pickering emulsifier. Industrial Crops and Products 186, 115119.
Flores-López, S.L., Montes-Morán, M.A., Arenillas, A., 2021. Carbon/silica hybrid aerogels with controlled porosity by a quick one-pot synthesis. Journal of Non-Crystalline Solids 569, 120992.
Foo, M.L., Ooi, C.W., Tan, K.W., Chew, I.M.L., 2020. A step closer to sustainable industrial production: tailor the properties of nanocrystalline cellulose from oil palm empty fruit bunch. Journal of Environmental Chemical Engineering, 104058.
Gaikwad, S., Kim, S.-J., Han, S., 2019. CO2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases. Microporous and Mesoporous Materials 277, 253-260.
Garcia-Gonzalez, C.A., Camino-Rey, M.C., Alnaief, M., Zetzl, C., Smirnova, I., 2012. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. The Journal of Supercritical Fluids 66, 297-306.
Garip, M., Gizli, N., 2020. Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption. Journal of Molecular Liquids 310, 113227.
George, J., Sabapathi, S., 2015. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Acience and Applications, 45-54.
Gonçalves, A.P., Oliveira, E., Mattedi, S., José, N.M., 2018. Separation of cellulose nanowhiskers from microcrystalline cellulose with an aqueous protic ionic liquid based on ammonium and hydrogensulphate. Separation and Purification Technology 196, 200-207.
Gong, C., Ni, J.-p., Tian, C., Su, Z.-h., 2021. Research in porous structure of cellulose aerogel made from cellulose nanofibrils. International Journal of Biological Macromolecules 172, 573-579.
Gong, J., Li, J., Xu, J., Xiang, Z., Mo, L., 2017. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances 7, 33486-33493.
Gong, X., Wang, Y., Zeng, H., Betti, M., Chen, L., 2019. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly (vinyl alcohol) aerogels as recyclable absorbents for oil–water separation. ACS Sustainable Chemistry & Engineering 7, 11118-11128.
Grząbka-Zasadzińska, A., Skrzypczak, A., Borysiak, S., 2019. The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites. Cellulose 26, 4827-4840.
Guo, Y., Tan, C., Wang, P., Sun, J., Yan, J., Li, W., Zhao, C., Lu, P., 2019. Kinetic study on CO2 adsorption behaviors of amine-modified co-firing fly ash. Journal of the Taiwan Institute of Chemical Engineers 96, 374-381.
Gupta, K.M., Jiang, J., 2015. Cellulose dissolution and regeneration in ionic liquids: A computational perspective. Chemical Engineering Science 121, 180-189.
Haafiz, M.M., Hassan, A., Zakaria, Z., Inuwa, I., 2014. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers 103, 119-125.
Habibi, Y., Lucia, L.A., Rojas, O.J., 2010. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews 110, 3479-3500.
Hafemann, E., Battisti, R., Marangoni, C., Machado, R.A., 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate polymers 218, 188-198.
Hasan, M.M., Kubra, K.T., Hasan, M.N., Awual, M.E., Salman, M.S., Sheikh, M.C., Rehan, A.I., Rasee, A.I., Waliullah, R.M., Islam, M.S., Khandaker, S., Islam, A., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., Awual, M.R., 2023. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. Journal of Molecular Liquids 371, 121125.
Hastuti, N., Kanomata, K., Kitaoka, T., 2018. Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals. Journal of Polymers and the Environment 26, 3698-3709.
He, F., He, X., Yang, W., Zhang, X., Zhou, L., 2018. In-situ synthesis and structural characterization of cellulose-silica aerogels by one-step impregnation. Journal of Non-Crystalline Solids 488, 36-43.
He, S., Huang, Y., Chen, G., Feng, M., Dai, H., Yuan, B., Chen, X., 2019. Effect of heat treatment on hydrophobic silica aerogel. Journal of Hazardous Materials 362, 294-302.
Henao, W., Jaramillo, L., López, D., Romero-Sáez, M., Buitrago-Sierra, R., 2020. Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash. Journal of Environmental Chemical Engineering 8, 104362.
Henrique, M.A., Neto, W.P.F., Silvério, H.A., Martins, D.F., Gurgel, L.V.A., da Silva Barud, H., de Morais, L.C., Pasquini, D., 2015. Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Industrial Crops and Products 76, 128-140.
Hoareau, W., Trindade, W.G., Siegmund, B., Castellan, A., Frollini, E., 2004. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation and Stability 86, 567-576.
Hong-li, L., Xiang, H., Hong-yan, L., Jing, L., Ya-jing, L., 2018. Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure. Ferroelectrics 528, 15-21.
Hou, W., Ling, C., Shi, S., Yan, Z., 2019. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid. International Journal of Biological Macromolecules 123, 363-368.
Hsan, N., Dutta, P.K., Kumar, S., Bera, R., Das, N., 2019. Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. International Journal of Biological Macromolecules 125, 300-306.
Hsieh, Y.L., 2007. 1 - Chemical structure and properties of cotton, in: Gordon, S., Hsieh, Y.L. (Eds.), Cotton. Woodhead Publishing, pp. 3-34.
Indirasetyo, N.L., 2022. Isolation and properties of cellulose nanocrystals fabricated by ammonium persulfate oxidation from Sansevieria trifasciata fibers. Fibers 10, 61.
Jiang, F., Hu, S., Hsieh, Y.-l., 2018. Aqueous synthesis of compressible and thermally stable cellulose nanofibril–silica aerogel for CO2 adsorption. ACS Applied Nano Materials 1, 6701-6710.
Jiang, J., Carrillo-Enríquez, N.C., Oguzlu, H., Han, X., Bi, R., Song, M., Saddler, J.N., Sun, R.-C., Jiang, F., 2020a. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustainable Chemistry & Engineering 8, 7182-7191.
Jiang, Q., Xing, X., Jing, Y., Han, Y., 2020b. Preparation of cellulose nanocrystals based on waste paper via different systems. International Journal of Biological Macromolecules 149, 1318-1322.
Jiang, X., Kong, Y., Zhao, Z., Shen, X., 2020c. Spherical amine grafted silica aerogels for CO2 capture. RSC advances 10, 25911-25917.
Jiang, X., Kong, Y., Zou, H., Zhao, Z., Zhong, Y., Shen, X., 2021. Amine grafted cellulose aerogel for CO2 capture. Journal of Materials Science 28, 93-97.
Jiang, X., Ren, J., Kong, Y., Zhao, Z., Shen, X., Fan, M., 2020d. Shape-tailorable amine grafted silica aerogel microsphere for CO2 capture. Green Chemical Engineering 1, 140-146.
Jiménez-Saelices, C., Seantier, B., Cathala, B., Grohens, Y., 2017. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydrate Polymers 157, 105-113.
Ju, X., Bowden, M., Brown, E.E., Zhang, X., 2015. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate Polymers 123, 476-481.
K. J, N., Balaji, A.N., Ramanujam, N.R., 2020. Isolation and characterization of cellulose nanocrystals from Saharan aloe vera cactus fibers. International Journal of Polymer Analysis and Characterization 25, 51-64.
Kale, R.D., Bansal, P.S., Gorade, V.G., 2018. Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. Journal of Polymers and the Environment 26, 355-364.
Kandhola, G., Djioleu, A., Rajan, K., Labbé, N., Sakon, J., Carrier, D.J., Kim, J.-W., 2020. Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: a response surface approach. Bioresources and Bioprocessing 7, 19.
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y., Sheltami, R.M., 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855-866.
Karim, M., Chowdhury, Z.Z., Hamid, S.B.A., Ali, M., 2014. Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst. Materials 7, 6982-6999.
Kassab, Z., Syafri, E., Tamraoui, Y., Hannache, H., Qaiss, A.E.K., El Achaby, M., 2020. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules 154, 1419-1425.
Kaur, P., Sharma, N., Munagala, M., Rajkhowa, R., Aallardyce, B., Shastri, Y., Agrawal, R., 2021. Nanocellulose: resources, physio-chemical properties, current uses and future applications. Frontiers in Nanotechnology 3, 747329.
Keshavarz, L., Ghaani, M.R., MacElroy, J.D., English, N.J., 2021. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chemical Engineering Journal 412, 128604.
Khedkar, M.V., Somvanshi, S.B., Humbe, A.V., Jadhav, K., 2019. Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. Journal of Non-Crystalline Solids 511, 140-146.
Kian, L.K., Saba, N., Jawaid, M., Fouad, H., 2020. Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules 156, 347-353.
Kiliyankil, V.A., Fugetsu, B., Sakata, I., Wang, Z., Endo, M., 2021a. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. Journal of Colloid and Interface Science 582, 950-960.
Kiliyankil, V.A., Fugetsu, B., Sakata, I., Wang, Z.P., Endo, M., 2021b. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. Journal Of Colloid And Interface Science 582, 950-960.
Kim, J.-H., Shim, B.S., Kim, H.S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., Kim, J., 2015. Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology 2, 197-213.
Kim, M., Lee, J.W., Kim, S., Kang, Y.T., 2022. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. Journal of Cleaner Production 337, 130597.
Kong, Y., Jiang, G., Wu, Y., Cui, S., Shen, X., 2016a. Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration. Chemical Engineering Journal 306, 362-368.
Kong, Y., Jiang, G.D., Fan, M.H., Shen, X.D., Cui, S., 2014a. Use of one-pot wet gel or precursor preparation and supercritical drying procedure for development of a high-performance CO2 sorbent. RSC Advances 4, 43448-43453.
Kong, Y., Shen, X., Cui, S., 2016b. Amine hybrid zirconia/silica composite aerogel for low-concentration CO2 capture. Microporous and Mesoporous Materials 236, 269-276.
Kong, Y., Shen, X., Cui, S., Fan, M., 2014b. Use of monolithic silicon carbide aerogel as a reusable support for development of regenerable CO2 adsorbent. RSC Advances 4, 64193-64199.
Kong, Y., Shen, X., Cui, S., Fan, M., 2015a. Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture. Applied Energy 147, 308-317.
Kong, Y., Shen, X., Cui, S., Fan, M., 2015b. Facile synthesis of an amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via a solvothermal-assisted sol–gel process and supercritical drying. Green Chemistry 17, 3436-3445.
Kong, Y., Shen, X., Fan, M., Yang, M., Cui, S., 2016c. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chemical Engineering Journal 283, 1059-1068.
Kong, Y., Shen, X.D., Fan, M.H., Yang, M., Cui, S., 2016d. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chemical Engineering Journal 283, 1059-1068.
Kong, Y., Zhang, J., Shen, X., 2017a. One-pot sol–gel synthesis of amine hybrid titania/silsesquioxane composite aerogel for CO2 capture. Journal of Sol-Gel Science and Technology 84, 422-431.
Kong, Y., Zhang, J.Y., Shen, X.D., 2017b. One-pot sol-gel synthesis of amine hybrid titania/silsesquioxane composite aerogel for CO2 capture. Journal of Sol-Gel Science And Technology 84, 422-431.
Kontturi, E., Meriluoto, A., Penttilä, P.A., Baccile, N., Malho, J.M., Potthast, A., Rosenau, T., Ruokolainen, J., Serimaa, R., Laine, J., 2016. Degradation and crystallization of cellulose in hydrogen chloride vapor for high‐yield isolation of cellulose nanocrystals. Angewandte Chemie International Edition 55, 14455-14458.
Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K., 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry 2, 1-8.
Kusmono, Listyanda, R.F., Wildan, M.W., Ilman, M.N., 2020. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6, e05486.
Lazko, J., Sénéchal, T., Bouchut, A., Paint, Y., Dangreau, L., Fradet, A., Tessier, M., Raquez, J.M., Dubois, P., 2016. Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids. Nanocomposites 2, 65-75.
Le Gars, M., Douard, L., Belgacem, N., Bras, J., 2019. Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents. Smart nanosystems for biomedicine, optoelectronics and catalysis.
Le Normand, M., Moriana, R., Ek, M., 2014. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate Polymers 111, 979-987.
Lee, S.-Y., Park, S.-J., 2015. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry 23, 1-11.
Leguy, J., Diallo, A., Putaux, J.-L., Nishiyama, Y., Heux, L., Jean, B., 2018. Periodate oxidation followed by nabh4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir 34, 11066-11075.
Lei, W., Zhou, X., Fang, C., Li, Y., Song, Y., Wang, C., Huang, Z., 2019. New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management 95, 59-69.
Li, H., Yan, Z., Xiong, Q., Chen, X., Lin, Y., Xu, Y., Bai, L., Jiang, W., Zheng, D., Xing, C., 2019a. Renoprotective effect and mechanism of polysaccharide from Polyporus umbellatus sclerotia on renal fibrosis. Carbohydrate Polymers 212, 1-10.
Li, M., Jiang, H., Xu, D., Yang, Y., 2017. A facile method to prepare cellulose whiskers–silica aerogel composites. Journal of Sol-Gel Science and Technology 83, 72-80.
Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J., 2009. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers 76, 94-99.
Li, Y., Grishkewich, N., Liu, L., Wang, C., Tam, K.C., Liu, S., Mao, Z., Sui, X., 2019b. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chemical Engineering Journal 366, 531-538.
Li, Y., Jia, P., Xu, J., Wu, Y., Jiang, H., Li, Z., 2020. The aminosilane functionalization of cellulose nanofibrils and the mechanical and co2 adsorption characteristics of their aerogel. Industrial & Engineering Chemistry Research 59, 2874-2882.
Li, Z., Liao, R., Jia, R., Liu, Y., Xu, X., Shen, J., Wang, X., Wu, G., Wu, Q., Shi, J., 2021. A novel preparation of superhydrophobic silica aerogels via the combustion drying method. Ceramics International 47, 25274-25280.
Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L., Yao, J., 2016. Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Advances 6, 63773-63781.
Lin, N., Dufresne, A., 2014. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6, 5384-5393.
Lin, W.-H., Jana, S.C., 2021. Analysis of porous structures of cellulose aerogel monoliths and microparticles. Microporous and Mesoporous Materials 310, 110625.
Linneen, N., 2014. Synthesis and carbon dioxide adsorption properties of amine modified particulate silica aerogel sorbents. Arizona State University.
Linneen, N., Pfeffer, R., Lin, Y.S., 2013a. CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous and Mesoporous Materials 176, 123-131.
Linneen, N.N., Pfeffer, R., Lin, Y.S., 2013b. Amine distribution and carbon dioxide sorption performance of amine coated silica aerogel sorbents: effect of synthesis methods. Industrial & Engineering Chemistry Research 52, 14671-14679.
Linneen, N.N., Pfeffer, R., Lin, Y.S., 2014. CO2 adsorption performance for amine grafted particulate silica aerogels. Chemical Engineering Journal 254, 190-197.
Liu, J., Xie, H., Wang, Q., Chen, S., Hu, Z., 2020. Influence of pore structure on shale gas recovery with co2 sequestration: insight into molecular mechanisms. Energy & Fuels 34, 1240-1250.
Liu, Q., Han, Y., Qian, X., He, P., Fei, Z., Chen, X., Zhang, Z., Tang, J., Cui, M., Qiao, X., 2019. CO2 Adsorption over carbon aerogels: the effect of pore and surface properties. ChemistrySelect 4, 3161-3168.
Liu, Q., Yan, K., Chen, J., Xia, M., Li, M., Liu, K., Wang, D., Wu, C., Xie, Y., 2021. Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate 2, e30.
Lu, P., Hsieh, Y.-L., 2010. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate Polymers 82, 329-336.
Lu, Q., Cai, Z., Lin, F., Tang, L., Wang, S., Huang, B., 2016. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustainable Chemistry & Engineering 4, 2165-2172.
Maciel, M.M.Á.D., Benini, K.C.C.d.C., Voorwald, H.J.C., Cioffi, M.O.H., 2019. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. International Journal of Biological Macromolecules 126, 496-506.
Mahfoudhi, N., Boufi, S., 2017. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24, 1171-1197.
Maiti, S., Jayaramudu, J., Das, K., Reddy, S.M., Sadiku, R., Ray, S.S., Liu, D., 2013. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers 98, 562-567.
Malladi, R., Nagalakshmaiah, M., Robert, M., Elkoun, S., 2018. Importance of agriculture and industrial waste in the field of nano cellulose and its recent industrial developments: a review. ACS Sustainable Chemistry & Engineering 6, 2807-2828.
Marques, L., Carrott, P., Carrott, M.R., 2013. Amine-modified carbon aerogels for CO2 capture. Adsorption Science & Technology 31, 223-232.
Marques, L., Carrott, P., Carrott, M.R., 2016. Carbon aerogels used in carbon dioxide capture. Boletín del Grupo Español del Carbón, 9-12.
Martí‐Ferrer, F., Vilaplana, F., Ribes‐Greus, A., Benedito‐Borrás, A., Sanz‐Box, C., 2006. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents. Journal of Applied Polymer Science 99, 1823-1831.
Masika, E., Mokaya, R., 2013. High surface area metal salt templated carbon aerogels via a simple subcritical drying route: preparation and CO2 uptake properties. RSC Advances 3, 17677-17681.
Matebie, B.Y., Tizazu, B.Z., Kadhem, A.A., Venkatesa Prabhu, S., 2021. Synthesis of cellulose nanocrystals (CNCs) from Brewer’s spent grain using acid hydrolysis: Characterization and optimization. Journal of Nanomaterials 2021, 1-10.
Melikoğlu, A.Y., Bilek, S.E., Cesur, S., 2019. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate Polymers 215, 330-337.
Merlini, A., Claumann, C., Zibetti, A.W., Coirolo, A., Rieg, T., Machado, R.A., 2020. Kinetic study of the thermal decomposition of cellulose nanocrystals with different crystal structures and morphologies. Industrial & Engineering Chemistry Research 59, 13428-13439.
Mi, H.-Y., Li, H., Jing, X., Zhang, Q., Feng, P.-Y., He, P., Liu, Y., 2020. Superhydrophobic cellulose nanofibril/silica fiber/Fe3O4 nanocomposite aerogel for magnetically driven selective oil absorption. Cellulose 27, 8909-8922.
Miao, J., Yu, Y., Jiang, Z., Zhang, L., 2016. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23, 1209-1219.
Miao, Y., Luo, H., Pudukudy, M., Zhi, Y., Zhao, W., Shan, S., Jia, Q., Ni, Y., 2020a. CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers. Carbohydrate Polymers 227, 115380.
Miao, Y., Pudukudy, M., Zhi, Y., Miao, Y., Shan, S., Jia, Q., Ni, Y., 2020b. A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture. Carbohydrate Polymers 236, 116079.
Minju, N., Abhilash, P., Nair, B.N., Mohamed, A.P., Ananthakumar, S., 2015. Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing. Chemical Engineering Journal 269, 335-342.
Mittal, N., Samanta, A., Sarkar, P., Gupta, R., 2015. Post combustion CO2 capture using N-(3-trimethoxysilylpropyl)diethylenetriamine-grafted solid adsorbent. Energy Science & Engineering 3, 207-220.
Mohanty, A.K., Misra, M., Drzal, L.T., 2005. Natural fibers, biopolymers, and biocomposites. CRC press.
Mohd, N.H., Kargazadeh, H., Miyamoto, M., Uemiya, S., Sharer, N., Baharum, A., Peng, T.L., Ahmad, I., Yarmo, M.A., Othaman, R., 2021. Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. Journal of Materials Research and Technology 13, 2287-2296.
Mondragon, G., Fernandes, S., Retegi, A., Peña, C., Algar, I., Eceiza, A., Arbelaiz, A., 2014. A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products 55, 140-148.
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40, 3941-3994.
Mu, R., Hong, X., Ni, Y., Li, Y., Pang, J., Wang, Q., Xiao, J., Zheng, Y., 2019. Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology 93, 136-144.
Nascimento, D.M., Almeida, J.S., Dias, A.F., Figueirêdo, M.C.B., Morais, J.P.S., Feitosa, J.P., Rosa, M.d.F., 2014. A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydrate Polymers 110, 456-463.
Nikolina, S., 2019. Environmental impact of the textile and clothing industry: What consumers need to know.
Obele, C.M., Ejimofor, M.I., Atuanya, C.U., Ibenta, M.E., 2021. Cassava stem cellulose (CSC) nanocrystal for optimal methylene Blue Bio sorption with response surface design. Current Research in Green and Sustainable Chemistry 4, 100067.
Oun, A.A., Rhim, J.-W., 2015. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydrate Polymers 134, 20-29.
Owolabi, A.F., Haafiz, M.M., Hossain, M.S., Hussin, M.H., Fazita, M.N., 2017. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules 95, 1228-1234.
Padmanabhan, S.K., Protopapa, C., Licciulli, A., 2021. Stiff and tough hydrophobic cellulose-silica aerogels from bacterial cellulose and fumed silica. Process Biochemistry 103, 31-38.
Pandi, N., Sonawane, S.H., Kishore, K.A., 2021. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry 70, 105353.
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3, 1-10.
Peng, B.L., Dhar, N., Liu, H., Tam, K., 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. The Canadian Journal of Chemical Engineering 89, 1191-1206.
Pennells, J., Godwin, I.D., Amiralian, N., Martin, D.J., 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27, 575-593.
Pereira, B., Arantes, V., 2020. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Industrial Crops and Products 152, 112377.
Pignataro, B., Licciardello, A., Cataldo, S., Marletta, G., 2003. SPM and TOF-SIMS investigation of the physical and chemical modification induced by tip writing of self-assembled monolayers. Materials Science and Engineering: C 23, 7-12.
Piñero, M., Mesa-Díaz, M.d.M., de los Santos, D., Reyes-Peces, M.V., Díaz-Fraile, J.A., de la Rosa-Fox, N., Esquivias, L., Morales-Florez, V., 2018. Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation. Journal of Sol-Gel Science and Technology 86, 391-399.
Pongchaiphol, S., Preechakun, T., Raita, M., Champreda, V., Laosiripojana, N., 2021. Characterization of cellulose–chitosan-based materials from different lignocellulosic residues prepared by the ethanosolv process and bleaching treatment with hydrogen peroxide. ACS Omega 6, 22791-22802.
Prasanna, N.S., Mitra, J., 2020. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydrate Polymers, 116706.
Querejeta, N., Rubiera, F., Pevida, C., 2022. Experimental study on the kinetics of co2 and h2o adsorption on honeycomb carbon monoliths under cement flue gas conditions. ACS Sustainable Chemistry & Engineering 10, 2107-2124.
Rahmanian, V., Pirzada, T., Wang, S., Khan, S.A., 2021. Cellulose‐based hybrid aerogels: strategies toward design and functionality. Advanced Materials 33, 2102892.
Rana, A.K., Frollini, E., Thakur, V.K., 2021. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules 182, 1554-1581.
Randall, J.P., Meador, M.A.B., Jana, S.C., 2013. Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis (trimethoxysilylpropyl) amine as silane precursors. Journal of Materials Chemistry A 1, 6642-6652.
Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., Khan, A., 2020. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International journal of biological macromolecules 160, 183-191.
Riba, J.-R., Cantero, R., Canals, T., Puig, R., 2020. Circular economy of post-consumer textile waste: Classification through infrared spectroscopy. Journal of Cleaner Production 272, 123011.
Rui Xiong, X.Z., Dong Tian, Zehang Zhou, Canhui Lu, 2012. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19, 1189–1198.
Sahoo, T.R., Prelot, B., 2020. Chapter 7 - Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology, in: Bonelli, B., Freyria, F.S., Rossetti, I., Sethi, R. (Eds.), Nanomaterials for the Detection and Removal of Wastewater Pollutants. Elsevier, pp. 161-222.
Sai, H., Xing, L., Xiang, J., Cui, L., Jiao, J., Zhao, C., Li, Z., Li, F., Zhang, T., 2014. Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Advances 4, 30453-30461.
Salman, M.S., Hasan, M.N., Hasan, M.M., Kubra, K.T., Sheikh, M.C., Rehan, A.I., Waliullah, R.M., Rasee, A.I., Awual, M.E., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., Awual, M.R., 2023a. Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. Journal of Molecular Structure 1282, 135259.
Salman, M.S., Sheikh, M.C., Hasan, M.M., Hasan, M.N., Kubra, K.T., Rehan, A.I., Awual, M.E., Rasee, A.I., Waliullah, R.M., Hossain, M.S., Khaleque, M.A., Alsukaibi, A.K.D., Alshammari, H.M., Awual, M.R., 2023b. Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Applied Surface Science 622, 157008.
Samsudin, N.A., Low, F.W., Yusoff, Y., Shakeri, M., Tan, X.Y., Lai, C.W., Asim, N., Oon, C.S., Newaz, K.S., Tiong, S.K., Amin, N., 2020. Effect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis process. Journal of Molecular Liquids 308, 113030.
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E., 2010. CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Applied Surface Science 256, 5323-5328.
Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R.G., Klein-Nulend, J., 2021. Cellulose and its derivatives: Towards biomedical applications. Cellulose 28, 1893-1931.
Sedighi Gilani, M., Boone, M.N., Fife, J.L., Zhao, S., Koebel, M.M., Zimmermann, T., Tingaut, P., 2016. Structure of cellulose -silica hybrid aerogel at sub-micron scale, studied by synchrotron X-ray tomographic microscopy. Composites Science and Technology 124, 71-80.
Sehaqui, H., Zhou, Q., Berglund, L.A., 2011. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites science and technology 71, 1593-1599.
Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H., Oksman, K., Yu, Q., 2020. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers 230, 115571.
Serafin, J., Sreńscek-Nazzal, J., Kamińska, A., Paszkiewicz, O., Michalkiewicz, B., 2022. Management of surgical mask waste to activated carbons for CO2 capture. Journal of CO2 Utilization 59, 101970.
Serna-Guerrero, R., Sayari, A., 2010. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chemical Engineering Journal 161, 182-190.
Shaheen, T.I., Emam, H.E., 2018. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. International journal of biological macromolecules 107, 1599-1606.
Shak, K.P.Y., Pang, Y.L., Mah, S.K., 2018. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein journal of nanotechnology 9, 2479-2498.
Shamskar, K.R., Heidari, H., Rashidi, A., 2016. Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Industrial Crops and Products 93, 203-211.
Shankaran, D.R., 2018. Cellulose nanocrystals for health care applications, Applications of nanomaterials. Elsevier, pp. 415-459.
Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., Xu, Y., 2020. Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Industrial Crops and Products 151, 112457.
Shen, X.H., Du, H.B., Mullins, R.H., Kommalapati, R.R., 2017. Polyethylenimine applications in carbon dioxide capture and separation: From theoretical study to experimental work. Energy Technology 5, 822-833.
Silva, T.L., Cazetta, A.L., Souza, P.S.C., Zhang, T., Asefa, T., Almeida, V.C., 2018. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. Journal of Cleaner Production 171, 482-490.
Singh, V.K., Kumar, E.A., 2016. Comparative studies on co2 adsorption kinetics by solid adsorbents. Energy Procedia 90, 316-325.
Siqueira, G.A., Dias, I.K.R., Arantes, V., 2019. Exploring the action of endoglucanases on bleached eucalyptus kraft pulp as potential catalyst for isolation of cellulose nanocrystals. International Journal of Biological Macromolecules 133, 1249-1259.
Sirviö, J.A., Visanko, M., Liimatainen, H., 2016. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17, 3025-3032.
Song, G., Zhu, X., Chen, R., Liao, Q., Ding, Y.-D., Chen, L., 2016. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chemical Engineering Journal 283, 175-183.
Song, K., Zhu, X., Zhu, W., Li, X., 2019. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresources and Bioprocessing 6, 1-8.
Spinella, S., Maiorana, A., Qian, Q., Dawson, N.J., Hepworth, V., McCallum, S.A., Ganesh, M., Singer, K.D., Gross, R.A., 2016. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustainable Chemistry & Engineering 4, 1538-1550.
Stanes, E., 2020. Lingering matter: Materialities, temporalities and waste in clothes, the temporalities of waste. Routledge, pp. 122-135.
Subrahmanyam, R., Gurikov, P., Meissner, I., Smirnova, I., 2016. Preparation of biopolymer aerogels using green solvents. JoVE (Journal of Visualized Experiments), e54116.
Sun, B., Yu, H.-Y., Zhou, Y., Huang, Z., Yao, J.-M., 2016. Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Industrial Crops and Products 89, 66-77.
Sun, J., Shang, M., Zhang, M., Yu, S., Yuan, Z., Yi, X., Filatov, S., Zhang, J., 2022. Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohydrate Polymers 293, 119720.
Sunkyu Park, J.O.B., Michael E Himmel, Philip A Parilla and David K Johnson, 2010. Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3, 10.
Tan, X., Chen, L., Li, X., Xie, F., 2019. Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. International Journal of Biological Macromolecules 124, 314-320.
Tan, X.Y., Abd Hamid, S.B., Lai, C.W., 2015. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass and Bioenergy 81, 584-591.
Tang, J., Sisler, J., Grishkewich, N., Tam, K.C., 2017. Functionalization of cellulose nanocrystals for advanced applications. Journal of Colloid and Interface Science 494, 397-409.
Tang, L., Zhuang, S., Hong, B., Cai, Z., Chen, Y., Huang, B., 2019. Synthesis of light weight, high strength biomass-derived composite aerogels with low thermal conductivities. Cellulose 26, 8699-8712.
Tarchoun, A.F., Trache, D., Klapötke, T.M., 2019. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules 138, 837-845.
Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., Goswami, S., 2020. Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Materials Science for Energy Technologies 3, 328-334.
Thambiraj, S., Ravi Shankaran, D., 2017. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Applied Surface Science 412, 405-416.
Thiangtham, S., Runt, J., Saito, N., Manuspiya, H., 2019. Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method. Cellulose, 1-18.
Tong, X., Shen, W., Chen, X., Jia, M., Roux, J.C., 2020. Preparation and mechanism analysis of morphology‐controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp. Journal of Applied Polymer Science 137, 48407.
Trilokesh, C., Uppuluri, K.B., 2019. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Scientific Reports 9, 1-8.
Valencia, L., Abdelhamid, H.N., 2019. Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydrate Polymers 213, 338-345.
Vanderfleet, O.M., Cranston, E.D., 2020. Production routes to tailor the performance of cellulose nanocrystals. Nature Reviews Materials, 1-21.
Vanderfleet, O.M., Reid, M.S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M.K., Cranston, E.D., 2019. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26, 507-528.
Vazhayal, L., Wilson, P., Prabhakaran, K., 2020. Waste to wealth: Lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO2 adsorption. Chemical Engineering Journal 381, 122628.
Verma, C., Chhajed, M., Gupta, P., Roy, S., Maji, P.K., 2021. Isolation of cellulose nanocrystals from different waste bio-mass collating their liquid crystal ordering with morphological exploration. International Journal of Biological Macromolecules 175, 242-253.
Vu, P.V., Doan, T.D., Tu, G.C., Do, N.H.N., Le, K.A., Le, P.K., 2022. A novel application of cellulose aerogel composites from pineapple leaf fibers and cotton waste: Removal of dyes and oil in wastewater. Journal of Porous Materials 29, 1137-1147.
Wan, C., Lu, Y., Jiao, Y., Cao, J., Sun, Q., Li, J., 2015. Preparation of mechanically strong and lightweight cellulose aerogels from cellulose-NaOH/PEG solution. Journal of Sol-Gel Science and Technology 74, 256-259.
Wang, C., Okubayashi, S., 2019. Polyethyleneimine-crosslinked cellulose aerogel for combustion CO2 capture. Carbohydrate Polymers 225, 115248.
Wang, H., Du, H., Liu, K., Liu, H., Xu, T., Zhang, S., Chen, X., Zhang, R., Li, H., Xie, H., Zhang, X., Si, C., 2021. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers 266, 118107.
Wang, H.J., Fang, Q., Gu, W.L., Du, D., Lin, Y.H., Zhu, C.Z., 2020a. Noble metal aerogels. ACS Applied Materials & Interfaces 12, 52234-52250.
Wang, Q., Zhao, X., Zhu, J., 2014. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Industrial & Engineering Chemistry Research 53, 11007-11014.
Wang, S., Wang, F., Song, Z., Song, X., Yang, X., Zhan, Q., 2019. Preparation of cellulose nanocrystals using highly recyclable organic acid treated softwood pulp. BioResources 14, 9331-9351.
Wang, Z., Yao, Z., Zhou, J., Zhang, Y., 2017. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydrate Polymers 157, 945-952.
Wang, Z., Zhu, W., Huang, R., Zhang, Y., Jia, C., Zhao, H., Chen, W., Xue, Y., 2020b. Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polymers 12, 2583.
Wardhono, E.Y., Kanani, N., Alfirano, A., 2019. A simple process of isolation microcrystalline cellulose using ultrasonic irradiation. Journal of Dispersion Science and Technology, 1-10.
Wei, J., Geng, S., Hedlund, J., Oksman, K., 2020. Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption. Cellulose 27, 2695-2707.
Wei, X., Huang, T., Yang, J.-h., Zhang, N., Wang, Y., Zhou, Z.-w., 2017. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. Journal of Hazardous Materials 335, 28-38.
Wong, J.C., Kaymak, H., Tingaut, P., Brunner, S., Koebel, M.M., 2015. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous and Mesoporous Materials 217, 150-158.
Wong, J.C.H., Kaymak, H., Brunner, S., Koebel, M.M., 2014. Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous and Mesoporous Materials 183, 23-29.
Wörmeyer, K., Smirnova, I., 2013. Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels. Chemical Engineering Journal 225, 350-357.
Wu, Y., Zhang, Y., Chen, N., Dai, S., Jiang, H., Wang, S., 2018. Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance. Carbohydrate Polymers 194, 252-259.
Xiao, Y., Liu, Y., Wang, X., Li, M., Lei, H., Xu, H., 2019. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. International journal of biological macromolecules 140, 225-233.
Xie, H., Zou, Z., Du, H., Zhang, X., Wang, X., Yang, X., Wang, H., Li, G., Li, L., Si, C., 2019. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydrate Polymers 223, 115116.
Xiong, R., Zhang, X., Tian, D., Zhou, Z., Lu, C., 2012. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19, 1189-1198.
Xu, J., Jia, P., Wang, X., Xie, Z., Chen, Z., Jiang, H., 2021. The aminosilane functionalization of cellulose nanocrystal aerogel via vapor‐phase reaction and its CO2 adsorption characteristics. Journal of Applied Polymer Science 138, 50891.
Yahya, M., Chen, Y.W., Lee, H.V., Hock, C.C., Hassan, W.H.W., 2019. A new protocol for efficient and high yield preparation of nanocellulose from elaeis guineensis biomass: A response surface methodology (RSM) study. Journal of Polymers and the Environment 27, 678-702.
Yang, F., Zhu, X., Wu, J., Wang, R., Ge, T., 2022. Kinetics and mechanism analysis of CO2 adsorption on LiX@ ZIF-8 with core shell structure. Powder Technology 399, 117090.
Yang, X., Wei, J., Shi, D., Sun, Y., Lv, S., Feng, J., Jiang, Y., 2014. Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Materials Science and Engineering: A 609, 125-130.
Yao, C., Dong, X., Gao, G., Sha, F., Xu, D., 2021. Microstructure and adsorption properties of mtms / teos co-precursor silica aerogels dried at ambient pressure. Journal of Non-Crystalline Solids 562, 120778.
Yao, W., Weng, Y., Catchmark, J.M., 2020. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27, 5563-5579.
Yiying Yue, C.Z., Alfred D. French, Guan Xia, Guangping Han, Qingwen Wang, Qinglin Wu, 2012. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187.
Yoro, K.O., Amosa, M.K., Sekoai, P.T., Mulopo, J., Daramola, M.O., 2020. Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit. International Journal of Sustainable Engineering 13, 54-67.
Yu, F., Wu, Y., Zhang, W., Cai, T., Xu, Y., Chen, X., 2016. A novel aerogel sodium‐based sorbent for low temperature CO2 capture. Greenhouse Gases: Science and Technology 6, 561-573.
Yu, X., Jiang, Y., Wu, Q., Wei, Z., Lin, X., Chen, Y., 2021. Preparation and characterization of cellulose nanocrystal extraction from Pennisetum hydridum fertilized by municipal sewage sludge via sulfuric acid hydrolysis. Frontiers in Energy Research, 653.
Yuan, B., Zhang, J., Mi, Q., Yu, J., Song, R., Zhang, J., 2017. Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol–gel process. ACS Sustainable Chemistry & Engineering 5, 11117-11123.
Zaman, A., Huang, F., Jiang, M., Wei, W., Zhou, Z., 2020. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy and Built Environment 1, 60-76.
Zhang, H., Chen, Y., Wang, S., Ma, L., Yu, Y., Dai, H., Zhang, Y., 2020a. Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydrate Polymers, 116180.
Zhang, H., Goeppert, A., Olah, G.A., Prakash, G.K.S., 2017. Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine. Journal of CO2 Utilization 19, 91-99.
Zhang, M., Jiang, S., Han, F., Li, M., Wang, N., Liu, L., 2021. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate Polymers 264, 118033.
Zhang, T., Zhang, W., Zhang, Y., Shen, M., Zhang, J., 2020b. Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption. Cellulose 27, 2953-2958.
Zhang, T., Zhang, Y., Jiang, H., Wang, X., 2019. Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity. Environmental Science and Pollution Research 26, 16716-16726.
Zhao, C., Li, Y., Ye, W., Shen, X., Yuan, X., Ma, C., Cao, Y., 2021. Performance regulation of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient pressure drying route. Journal of Non-Crystalline Solids 567, 120923.
Zhao, S., Zhang, Z., Sèbe, G., Wu, R., Rivera Virtudazo, R.V., Tingaut, P., Koebel, M.M., 2015. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Advanced Functional Materials 25, 2326-2334.
Zhao, S.Y., Malfait, W.J., Guerrero-Alburquerque, N., Koebel, M.M., Nystrom, G., 2018. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie-International Edition 57, 7580-7608.
Zheng, Q., Cai, Z., Gong, S., 2014. Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. Journal of materials chemistry A 2, 3110-3118.
Zhong, T., Dhandapani, R., Liang, D., Wang, J., Wolcott, M.P., Van Fossen, D., Liu, H., 2020. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films. Carbohydrate Polymers 240, 116283.
Zhou, G., Wang, K., Liu, R., Tian, Y., Kong, B., Qi, G., 2021. Synthesis and CO2 adsorption performance of TEPA-loaded cellulose whisker/silica composite aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 631, 127675.
Zhou, L., Shao, J.Z., Feng, X.X., Chen, J.Y., 2012. Effect of high‐temperature degumming on the constituents and structure of cotton stalk bark fibers. Journal of Applied Polymer Science 125, E573-E579.
Zhou, L., Zhai, Y.-M., Yang, M.-B., Yang, W., 2019. Flexible and tough cellulose nanocrystal/polycaprolactone hybrid aerogel based on the strategy of macromolecule cross-linking via click chemistry. ACS Sustainable Chemistry & Engineering 7, 15617-15627.
Zhou, Y., Saito, T., Bergström, L., Isogai, A., 2018. Acid-free preparation of cellulose nanocrystals by tempo oxidation and subsequent cavitation. Biomacromolecules 19, 633-639.
Zhu, L., Zong, L., Wu, X., Li, M., Wang, H., You, J., Li, C., 2018. Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462-4468.
Zimmermann, M.V.G., Zattera, A.J., 2021. Silica aerogel reinforced with cellulose nanofibers. Journal of Porous Materials 28, 1325-1333.
指導教授 江康鈺(Chiang Kung Yuh) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明