摘要(英) |
Harmonic drive is a compact and high gear reduction ratio used in industries such as aerospace, automation, medical etc. The harmonic gear is the key component influencing the performance. Therefore, this paper proposes a novel tooth profile design method called ETE (Ellipse arc-Tangent line -Ellipse arc) tooth profile for harmonic gears. This design method includes the CTC (Circular arc-Tangent line-Circular arc) tooth profile, as the circle is a special case of ellipse. This design approach enhances the flexibility of tooth profile design, effectively improving the transmission performance of the harmonic drive. In this study, the FEM-MBD (Finite Element Method-Multi-Body Dynamics) simulation is used to analyze the transmission errors and flex spline tooth surface stresses of various tooth profiles to evaluate performance differences. Due to the high efficiency and the capability to process both internal and external gears, power skiving was chosen as the production technology for harmonic gears. The power skiving tool is derived from the tooth profile of the harmonic gear, enabling the production of ideal harmonic gears using this tool. Furthermore, considering the tooth profile generation of the power skiving tool. The cross-sectional profile of the hob is derived from the tooth profile of the power skiving tool, enabling the production of ideal power skiving profile using this tool. The paper describes the machine tool motion for power skiving in the gear manufacturing process. The tooth profile parameters of the hob are adjusted to achieve crowning along the tooth profile direction, and the machine tool motion parameters are adjusted to modify the tooth length direction. Finally, numerical examples in this paper will verify the accuracy of the mathematical model for power skiving and compare the simulation results between CTC and ETE tooth profiles. |
參考文獻 |
[1]工業技術研究院,國產化機器人關鍵零組件技術。取自https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036233376235770452&MGID=711043621031010710
[2]International Federation of Robotics, World Robotics Report: “All-Time High” with Half a Million Robots Installed in one Year, 2022. 取自https://ifr.org/ifr-press-releases/news/wr-report-all-time-high-with-half-a-million-robots-installed
[3]Harmonic Drive LLC, Reducer Catalog, 2021. 取自https://www.harmonicdrive.net/_hd/content/documents1/reducer_catalog.pdf
[4]Raab, A.: Einflussfaktoren für ein prozesssicheres Wälzschälen in der Produktion von Nutzfahrzeuggetrieben, 3. Fachseminar Wälzschälen, Daimler AG, Chemnitz, Tagungsband, 3. April 2019.
[5]Musser, C. W., Strain Wave Gearing, U.S. Patent No2906143, 1959.
[6]Harmonic Drive Systems Inc, The world of motion control transformed by a single invention. 取自https://www.hds.co.jp/english/development/hd_skill/c_w_musser/
[7]Kondo, K., & Takada, J., “Study on Tooth Profiles of the Harmonic Drive,” Journal of Mechanical Design, 112(1), 131, 1990. doi:10.1115/1.2912570.
[8]Ishikawa, S., Tooth Profile of Spline of Strain Wave Gearing, U.S. Patent No.4823638, 1989.
[9]Ishikawa, S., Flexing Contact Type Gear Drive of Non-Profile-Shifted Two-Circular-Arc Composite Tooth Profile, U.S. Patent No.5458023, 1995.
[10]辛洪兵,雙圓弧諧波齒輪滾齒刀,中華人民共和國專利,授權公告號CN101134256B,2010。
[11]陳毅恆,諧波齒輪傳動系統之有限元素分析,碩士論文,國立交通大學,2013。
[12]李東祐,諧波齒輪傳動系統之三維有限元素分析,碩士論文,國立交通大學,2014。
[13]黃彥明,波產生器對諧波齒輪性能影響之有限元素分析,碩士論文,國立交通大學,2017。
[14]林佑杰,諧波齒輪之輸出傳遞誤差及背隙誤差分析研究,碩士論文,國立台灣科技大學,2019。
[15]李昀浚,漸開線型圓柱齒輪之強力刮齒數學模式,碩士論文,國立台灣科技大學,2016。
[16]Litvin, F. L., and Fuentes, A., Gear Geometry and Applied Theory, Cambridge University Press. 2nd Edition, 2004.
[17]德國 Pittler-Power Skiving 齒輪旋風車削機-PV系列型錄。取自渼科斯國際企業有限公司(atmax-tech.com)
[18]Rogers, D. F., Mathematical elements for computer graphics, 1990.
[19]https://www.makeitfrom.com/material-properties/Normalized-4340-Ni-Cr-Mo-Steel |