博碩士論文 109323608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.224.31.14
姓名 陳宏桂(Tran Hoang Quy)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用CNC 強力刮齒於直齒面齒輪齒面拓樸修整之數學模型建立
(Mathematical Modeling of Applying CNC Power Skiving on Tooth Surface Topology Modification for Spur Face Gears)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 電動車齒輪箱之剛-柔耦合動力學模型建立及等效輻射聲功率分析★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-28以後開放)
摘要(中) 目前,強力刮齒切削是齒輪制造中極高效率的加工方式。為了提高面齒輪的製
造效率,本研究提出了一種通用的方法,通過應用強力刮齒切削齒輪的方法和一種靈
活的數值方式来修正面齒輪齒面上的法線偏差。理輪上的面齒輪齒面是通過直齒型面
齒輪與直齒小齒輪之間的共軛條件推導出来的。本研究之數學模型建構是基於齒條切
割刀具的法向截面與配有強力刮齒刀之 CNC 加工機加工面齒輪的原理來定義。由於強
力刮齒刀的非對稱,本研究計算了面齒輪的表面法線偏差,並對機床上的軸進行調整,
使其作用於面齒輪齒面拓樸修型的数学模型上。然後採用基於 Levenberg-Marquardt
( LM)的最小化算法來進行敏感度矩陣的計算,最終計算出機床各軸的加工系数,從
而實現控制面齒輪齒面上的法线偏差。
摘要(英) Power skiving is currently the most efficient process for gear manufacturing. To
improve the manufacturing productivity of face gears, this study proposes a general method for
geometric generation of face gears by applying the gear power skiving method and a flexible
numerical approach for correcting normal deviations on the face-gear tooth surfaces. The
theoretical face-gear tooth surfaces are derived using the conjugation relationship between the
spur face-gear and the spur pinion. Mathematical modelling is defined for the conical skiving
cutter based on a normal section of rack cutter and the machining principle of face gear on the
CNC gear skiving machine. Due to the asymmetric skiving cutter, surface normal-deviations of
the face gear are calculated, and the mathematical model of the machine-axis modification for
the face-gear tooth topology modification is studied. Finally, a sensitivity correction method
based on the Levenberg-Marquardt (LM) minimization algorithm for calculating the machine
motion coefficients is employed to achieve the desired normal deviations on the face-gear tooth
surface.
關鍵字(中) ★ 強力刮齒加工
★ 面齒輪
★ 拓撲修整
★ 敏感度矩陣
關鍵字(英) ★ Power skiving
★ Face gear
★ Tooth surface modification
★ Sensitivity method
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables ix
Nomenclature x
Chapter 1 Introduction 1
1.1. Research background 1
1.2. Literature review 3
1.3. Research objectives 6
1.4. Thesis overview 7
Chapter 2 Mathematical model of the face-gear tooth surface 8
2.1. Spur pinion tooth surfaces 8
2.2. Face-gear tooth surfaces 10
Chapter 3 Mathematical model of generating the face gear by power skiving 13
3.1. Mathematical model of the power skiving cutter 13
3.2. Mathematical model of the skiving face-gear on the CNC gear skiving machine 18
Chapter 4 Numerical approach for topology modification in face-gear power skiving 23
4.1. Mathematical modelling for machine-axis modification in the multi-axis CNC gear skiving machine 23
4.2. Optimization model for calculating machine-axis settings 25
4.3. Evaluation of machine-axis additional coefficients on tooth surface normal deviation
28
4.4. Validation of proposed machining method for manufacturing spur face gear using conical skiving cutter 31
Chapter 5 Numerical examples 34
5.1. Non-grinding face-gear tooth surface with pre-defined accuracy grade 34
5.2. Face-gear tooth surface with a pre-defined even grinding stock amount 38
5.3. Double-crowning face-gear tooth surface with a pre-defined crowning amount 42
Chapter 6 Conclusions and future works 47
6.1. Conclusions 47
6.2. Future works 47
References 48
Author Profile 52
參考文獻 [1] F.L. Litvin, J.C. Wang, R.B. Bossler, Y.J. Chen, G. Heath, Application of Face-Gear Drives in Helicopter Transmissions, DTIC_ADA257727 (1992).
[2] V. Pittler, Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs, Patent Application, (1910).
[3] H.J. Stadtfeld, Power Skiving of Cylindrical Gears on Different Machine Platforms, Gear Technology (2014).
[4] D. Spath, A. Huhsam, Skiving for High-performance Machining of Periodic Structures, CIRP Annals - Manufacturing Technology (2002).
DOI: 10.1016/S0007-8506(07)61473-5
[5] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, (2004).
[6] E.W. Miller, Hob for generating crown gears, US Patent #2,304,586 (1942).
[7] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, R.F. Handschuh. Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis, Comput. Method. Appl. M. 2002.
DOI: 10.1016/S0045-7825(02)00215-3
[8] H.A. Zschippang, S. Weikert, K.A. Küçük, K. Wegener, Face-gear drive: Geometry generation and tooth contact analysis, Mech. Mach. Theory (2019).
DOI: 10.1016/j.mechmachtheory.2019.103576
[9] Y.Z. Wang, X.M. Chu, W.J. Zhao, Z. Wang, G.Y. Su, Y.Z. Huang, A precision generating hobbing method for face gear with assembly spherical hob, Journal of Central South University (2019).
DOI: 10.1007/s11771-019-4207-3
[10] Y.Z. Wang, Z. Lan, L.W. Hou, H.P. Zhao, Y. Zhong, A generating milling method for a spur face gear using a five-axis computer numerical control milling machine, J. Engineering Manufacture (2015).
DOI: 10.1177/0954405415619346
[11] X.Y. Yang and J.Y. Tang, Research on manufacturing method of CNC plunge milling for spur face-gear, J Mater Process Tech (2014).
DOI: 10.1016/j.jmatprotec.2014.07.010
[12] H. Guo, I. Gonzalez-Perez, A. Fuentes-Aznar, Computerized generation and meshing simulation of face gear drives manufactured by circular cutters, Mech. Mach. Theory 133 (2019).
DOI: 10.1016/j.mechmachtheory.2018.11.002
[13] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Simulation of shaping as manufacturing process of face-gears, Mech. Mach. Theory 172 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104791
[14] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, Design, generation, and stress analysis of two versions of geometry of face-gear drives, Mech. Mach. Theory 37 (2002).
DOI: 10.1016/S0094-114X(02)00050-2
[15] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Meshing efficiency assessment, Mech. Mach. Theory 171 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104765
[16] M. Kojima and K. Nishijima, Gear Skiving of Involute Internal Spur Gear. Bulletin of JSME 17(106), 511-518, The Japan Society of Mechanical Engineers (1974).
DOI: 10.1299/jsme1958.17.511
[17] C.Y. Tsai, Mathematical model for design and analysis of power skiving
tool for involute gear cutting, Mech. Mach. Theory 101 (2016).
DOI: 10.1016/j.mechmachtheory.2016.03.021
[18] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A correction method for power skiving of cylindrical gears lead modification, J. Mech. Sci. Technol. 29 (2015).
DOI: 10.1007/s12206-015-0936-x
[19] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, Research on the design of skiving tool for machining involute gears, J. Mech. Sci. Technol. 28 (2014).
DOI 10.1007/s12206-014-1133-z
[20] X.C. Chen, J. Li, B.C. Lou, A study on the design of error-free spur slice cutter, Int. J. Adv. Manuf. Technol. 68 (2013).
DOI: 10.1007/s00170-013-4794-3
[21] Y.P. Shih, Y.J. Li, A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture, Journal of Mechanical Design 140 (2017).
DOI: 10.1115/1.4038567
[22] C.Y. Tsai, Power-skiving tool design method for interference-free involute internal gear cutting, Mech. Mach. Theory 164 (2021).
DOI: 10.1016/j.mechmachtheory.2021.104396
[23] T.T. Luu, Y.R. Wu, A novel correction method to attain even grinding allowance in CNC gear skiving process, Mech. Mach. Theory 171 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104771
[24] J.K. Jiang, Z.D. Fang, High-order tooth flank correction for a helical gear on a six-axis CNC hob machine, Mech. Mach. Theory 91 (2015).
DOI: 10.1016/j.mechmachtheory.2015.04.012
[25] V.Q. Tran, Y.R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mech. Mach. Theory 145 (2020).
DOI: 10.1016/j.mechmachtheory.2019.103691
[26] Y.B. Shen, X. Liu, D.Y. Li, Z.P. Li, A method for grinding face gear of double crowned tooth geometry on a multi-axis CNC machine, Mech. Mach. Theory 121 (2018).
DOI: 10.1016/j.mechmachtheory.2017.11.007
[27] D.K. Vu, Y.R. Wu, Q.D. Nguyen, A. Arifin, Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes for internal-meshing gear honing, Mech. Mach. Theory 187 (2023).
DOI: 10.1016/j.mechmachtheory.2023.105372
[28] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A novel power skiving method using the common shaper cutter, Int. J. Adv. Manuf. Technol. 83 (2016).
DOI: 10.1007/s00170-015-7559-3
[29] T.T. Luu., Y.R. Wu, A novel approach to attain tooth flanks with variable pressure and helical angles utilizing the same cutter in the CNC gear skiving process, Int. J. Adv. Manuf. Technol. 123 (2022).
DOI: 10.1007/s00170-022-10220-4
[30] Z.Y. Han, C. Jiang, X.Z. Deng, Machining and meshing analysis of face gears by power skiving, J. Adv. Mech. Des. Sys. Manuf. 16 (2022).
DOI:10.1299/jamdsm.2022jamdsm0002
[31] S. Mo, S. Wang, B. Luo, H. Bao, G. Cen, Y. Huang, Research on the skiving technology of face gear, Int J Adv Manuf Technol. 121 (2022).
DOI: 10.1007/s00170-022-09663-6
[32] H. Guo, T. Ma, S. Zhang, N. Zhao, A. Fuentes, Computerized generation and surface deviation correction of face gear drives generated by skiving, Mech. Mach. Theory 173 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104839
[33] American Gear Manufacturers Association, Bevel Gear Classification, Tolerances, and Measuring Methods, ANSI/AGMA 2009-B01.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明