博碩士論文 110323022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.226.159.73
姓名 陳學瑜(Hsueh-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 模具設計對鋼板及鋁板在自沖鉚接特性影響之實驗及數據研究:數據庫構建方法及應用
(Experimental and numerical investigation into the impact of die design on the characteristics of self-piercing riveting of steel and aluminum sheets: A database construction approach)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究透過實驗與數值分析探討板材厚度與模具設計對自沖鉚接(SPR)品質的影響,並提升鋼與鋁合金接合品質以及建構和擴展自沖鉚接數據庫。本研究事先運用有限元素分析軟體Qfrom,分析自沖鉚接的成型狀況並驗證模具的鉚接能力。於實驗中,選用高強度鋼為上層板材,鋁為下層板材,探討不同板材厚度與模具類型對於自沖鉚接參數的影響。透過測量鎖緊值(Interlock)與剩餘厚度(Remaining thickness),得以從線切割(WEDM)之樣品中初步評估鉚接品質,經量測本實驗達到最大0.72mm的鎖緊值和0.85mm的剩餘厚度。由於過往研究鮮少提及自沖鉚接參數調整對於抗拉強度的影響,因此本研究將進行剪切測試以更準確評估接合品質;經實驗得到最大剪切強度值為9872N。本研究之創新之處在於擴大自沖鉚接品質視窗之範圍,提出了更廣的失效概率(Failure probability)、鎖緊值與創新的抗拉強度值範圍。本研究將dR/(tt+dd)取值範圍從原始的0.95-1.05擴大到0.75-1.35,tR/tt值從0.2-0.28擴大到0.28-0.6,使其在業界中具有更廣泛的應用性。最後,我們提出了新的抗拉強度值視窗,以便汽車產業在製造設計過程中選取適當的板材組合。
摘要(英) This research explores the impact of sheet thickness and die design variations on the self-piercing riveting (SPR) process′s feasibility and quality, particularly for steel-to-aluminum stacks. By utilizing finite element analysis software Qform to simulate the SPR process, and conducting experiments with high-strength steel and aluminum sheets of varying thicknesses and dies, the results broadened our understanding of SPR process parameters. The quality of the riveting was assessed through measurements of interlock values and remaining thicknesses, the results indicating significant improvements over previous studies. Specifically, the results achieved an interlock value of 0.72mm and a remaining thickness of 0.85mm. Since previous studies rarely mentioned the influence of tensile strength on various parameters, this research performed shear tests to accurately assess joint quality, yielding a maximum strength of 9872N. This study extends the SPR processing window, proposing expanded ranges for failure probability, interlock values, and new shear strength value windows. The dR/(tt+dd) value range was extended from the original 0.95-1.05 to 0.75-1.35, and the tR/tt value was extended from 0.2-0.28 to 0.28-0.6. This broader range enhances SPR′s industrial applicability. Additionally, new strength value windows were proposed for improved sheet combination selection in the manufacturing design process.
關鍵字(中) ★ 自衝鉚釘
★ 鋁合金
★ 高強度鋼
★ 有限元素分析
★ 鎖緊值
★ 拉伸試驗
關鍵字(英) ★ Self-pierce riveting
★ Aluminum alloy
★ High-strength steel
★ Finite element analysis
★ Interlock
★ Shear test
論文目次 摘 要 I
Abstract II
誌 謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章:緒論 1
1-1 前言 1
1-2 研究動機與方法 4
第二章:文獻回顧 5
2-1 SPR現行發展 5
2-2 SPR鉚接步驟 5
2-3 鉚接品質評判標準 7
2-4 失效機率、鎖緊值、性能指標視窗 8
第三章:實驗設備 10
第四章:模擬與實驗探討模具外型以及板材厚度對於鉚接品質之影響 21
4-1 緒論 21
4-2 模擬與實驗 23
4-2-1 有限元素模型 23
4-2-2 模具設計 29
4-2-3 鉚釘與板材材料 31
4-2-4 鉚釘機及拉伸試驗 36
4-3 結果與討論 38
4-3-1 模擬與實驗結果對照 38
4-3-2 鎖緊值和剩餘厚度之比較 41
4-3-3 拉伸試驗以及破壞行為探討 45
4-4 視窗探討 49
4-5 結論 54
參考文獻 56
附錄 59
參考文獻 [1] N. Karathanasopoulos, Kedar S. Pandya, D. Mohr, "An experimental and numerical investigation of the role of rivet and die design on the self-piercing riveting joint characteristics of aluminum and steel sheets," Journal of Manufacturing Processes, Volume 69, 2021, Pages 290-302.

[2] Myung D , Noh W , Kim J-H , Kong J , Hong S-T , Lee M-G . "Probing the mechanism of friction stir welding with ALE based finite element simulations and its application to strength prediction of welded aluminum." Met Mater Int 2021;27(4):650–66.

[3] "The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding."

[4] "Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength."

[5] Johnson P. "Quality control and nondestructive testing of self-piercing riveted joints in aerospace and other applications." In: Chaturvedi M, editor. Welding and joining of aerospace materials. 2nd ed. Woodhead Publishing; 2012. p. 363–81.

[6] Jeon, N.-K.; Rhee, S.; Kam, D.-H. "Parametric Study of Self-Piercing Riveting for CFRP-Aluminum Dissimilar Joint." J. Weld. Join. 2018, 36, 8.

[7] He X, Zhao L, Deng C, Xing B, Gu F, Ball A. "Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy." Mater Des 2015;65:923–33.

[8] He X, Wang Y, Lu Y, Zeng K, Gu F, Ball A. "Self-piercing riveting of similar and dissimilar titanium sheet materials." Int J Adv Manuf Technol 2015;80(9):2105–15.

[9] Jeong, T.-E.; Kim, M.-G.; Rhee, S.; Kam, D.-H. "Joint quality study of self-piercing riveted aluminum and steel joints depending on the thickness and strength of base metal." J. Weld. Join. 2019, 37, 212.

[10] Haque, R. "Residual Stress and Deformation in SPR Joints of High Strength Materials." Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2014.

[11] Nikolaos Karathanasopoulos, Dirk Mohr, "Strength and Failure of Self-Piercing Riveted Aluminum and Steel Sheet Joints: Multi-axial Experiments and Modeling," Journal of Advanced Joining Processes, Volume 5, 2022, 100107.

[12] Rezwanul Haque, "Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review," Archives of Civil and Mechanical Engineering, Volume 18, Issue 1, 2018, Pages 83-93.

[13] Rao, H., Kang, J., Huff, G., Avery, K. et al., "Impact of Rivet Head Height on the Tensile and Fatigue Properties of Lap Shear Self-Pierced Riveted CFRP to Aluminum," SAE Int. J. Mater. Manf. 10(2):167-173, 2017.

[14] Lim, Y. C., Chen, J., Jun, J., Leonard, D. N., Brady, M. P., Warren, C. D., and Feng, Z. (October 23, 2020). "Mechanical and Corrosion Assessment of Friction Self-Piercing Rivet Joint of Carbon Fiber-Reinforced Polymer and Magnesium Alloy AZ31B." ASME. J. Manuf. Sci. Eng. March 2021; 143(3): 031006.

[15] Jeong, T.-E.; Kam, D.-H.; Kim, C. "Parametric Investigation of Effect of Abnormal Process Conditions on Self-Piercing Riveting." Appl. Sci. 2020, 10, 2520.

[16] Ang, H.Q. "An Overview of Self-piercing Riveting Process with Focus on Joint Failures, Corrosion Issues and Optimization Techniques." Chin. J. Mech. Eng. 34, 2 (2021).

[17] Zhou, Z.-J.; Huang, Z.-C.; Jiang, Y.-Q.; Tang, N.-L. "Joining Properties of SPFC440/AA5052 Multi-Material Self-Piercing Riveting Joints." Materials 2022, 15, 2962.

[18] Kam, D.H.; Jeong, T.E.; Kim, J. "A Quality Study of a Self-Piercing Riveted Joint between Vibration-Damping Aluminum Alloy and Dissimilar Materials." Appl. Sci. 2020, 10, 5947.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2023-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明