參考文獻 |
參考文獻
[1] B. Blais, M. Lassaignea, C. Goniva, L. Fradette, F. Bertrand, Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing, J. Comput. Phys. 318 (2016) 201-221.
[2] K.W. Chu, J. Chen, B. Wang, A.B. Yu, A. Vince, G.D. Barnett, P.J. Barnett, Understand solids loading effects in a dense medium cyclone: Effect of particle size by a CFD-DEM method, Powder Technol. 320 (2017) 594-609.
[3] Y. Sheng, M. Wang, L. Zhang, Q. Ren, Analysis of filtration process of 3-D mesh spacer filter by using CFD-DEM simulation, Powder Technol. 396 (2022) 785-793.
[4] Q. Zhu, D. Gou, H.K. Chan, A. Kourmatzis, R. Yang, Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations, Int. J. Pharm. 637 (2023) 122871.
[5] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71 (1992) 239-250.
[6] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1979) 47-65.
[7] S. Golshan, B. Esgandari, R. Zarghami, CFD-DEM and TFM Simulations of Spouted Bed, Chem. Eng. Trans. 57 (2017) 1249-1254.
[8] X.L. Zhao, S.Q. Li, G.Q. Liu, Q. Yao, J.S. Marshall, DEM simulation of the particle dynamics in two-dimensional spouted beds, Powder Technol. 184 (2008) 205-213.
[9] C. Moliner, F. Marchelli, N. Spanachi, A. Martinez-Felipe, B. Bosio, E. Arato, CFD simulation of a spouted bed:Comparison between the Discrete Element Method (DEM) and the Two Fluid Model (TFM), Chem. Eng. J. 377 (2019) 120466.
[10] A. Bérard, G.S. Patience, B. Blais, Experimental methods in chemical engineering: Unresolved CFD-DEM, Can. J. Chem. Eng. 98 (2020) 420-440.
[11] Y. Di, L. Zhao, J. Mao, A resolved CFD-DEM method based on the IBM for sedimentation of dense fluid-particle flows, Comput. Fluids 226 (2021) 104968.
[12] C.M. Boyce, D.J. Holland, S.A. Scott, J.S. Dennis, Limitations on Fluid Grid Sizing for Using Volume-Averaged Fluid Equations in Discrete Element Models of Fluidized Beds, Ind. Eng. Chem. Fund. 54 (2015) 10684-10697.
[13] A. Volk, U. Ghia, C. Stoltz, Effect of grid type and refinement method on CFD-DEM solution trend with grid size, Powder Technol. 311 (2017) 137-146.
[14] W.D. Fullmer, J. Musser, CFD-DEM solution verification: Fixed-bed studies, Powder Technol. 339 (2018) 760-764.
[15] A.E. Carlos Varas, E.A.J.F. Peters, J.A.M. Kuipers, CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics, Chem. Eng.- Sci. 169 (2017) 246-258.
[16] K. Lv, F. Min, J. Zhu, B. Ren, X. Bai, C. Wang, Experiments and CFD-DEM simulations of fine kaolinite particle sedimentation dynamic characteristics in a water environment, Powder Technol. 382 (2021) 60-69.
[17] Y. He, A.E. Bayly, A. Hassanpour, Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows, Powder Technol. 325 (2018) 620-631.
[18] C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker, Models, algorithms and validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid. Dy. 12 (2012) 140-152.
[19] F. Marchelli, Q. Hou, B. Bosio, E. Arato, A. Yu, Comparison of different drag models in CFD-DEM simulations of spouted beds, Powder Technol. 360 (2020) 1253-1270.
[20] L. Zhou, L. Zhang, L. Bai, W. Shi, W. Li, C. Wang, R. Agarwal, Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models, RSC Adv. 7 (2017) 12764-12774.
[21] H. Zbib, M. Ebrahimi, F. Ein-Mozaffari, A. Lohi, Comprehensive analysis of fluid-particle and particle-particle interactions in a liquid-solid fluidized bed via CFD-DEM coupling and tomography, Powder Technol. 340 (2018) 116-130.
[22] 陳定偉,以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為,國立中央大學機械工程學系碩士論文 (2017)。
[23] D.A. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15 (1983) 261-291.
[24] B. E. Launder, D. B. Spalding, Lectures in Mathematical Models of Turbulence, AP, London, England. (1972).
[25] H. Hertz, Über die Berührung fester elastischer Körper, J. Reine. Angew. Math. 92 (1881) 156-171.
[26] T. Schwager, T. Pöschel, Coefficient of restitution and linear–dashpot model revisited, Granul. Matter. 9 (2007) 465-469.
[27] C. Wen, Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. S. Ser. 162 (1966) 100-111.
[28] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach, Fluidization VII (1992) 75-82.
[29] L. Huilin, D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures, Chem. Eng. Sci. 58 (2003) 3777-3792.
[30] R. Di Felice, The voidage function for fluid-particle interaction systems, Int. J. Multiphas. Flow 20 (1994) 153-159.
[31] E.E. Paladino, Estudo do escoamento multifásico em medidores de vazão do tipo pressão diferencial, PhD thesis, Universidade Federal de Santa Catarina, SC (2005).
[32] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77 (1993) 79-87.
[33] H.T. Chou, C.F. Lee, Y.C. Chung, S.S. Hsiau, Discrete element modelling and experimental validation for the falling process of dry granular steps, Powder Technol. 231 (2012) 122-134.
[34] N. Taberlet, P. Richard, A. Valance, W. Losert, J. M. Pasini, J. T. Jenkins, R. Delannay, Super Stable Granular Heap in a Channel, Phys. Rev. Lett. 91 (2004) 264301-1-4. |