博碩士論文 109323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.135.206.98
姓名 李韋逸(Wei-Yi Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以計算流體力學及離散元素法雙向耦合模擬水中顆粒體崩塌行為與內部性質:網格尺寸、阻力模型與虛擬質量力模型 的參數研究
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-31以後開放)
摘要(中) 本研究採用未解析法的計算流體力學與離散元素法雙向流耦合(Unresolved CFD-DEM)模擬顆粒體在水中崩塌的流動行為,並比較對應的物理實驗結果,探討流體網格尺寸、阻力模型、及虛擬質量力的影響,進一步分析顆粒體崩塌速度分布與出口處顆粒體積流率。研究結果顯示:(1)顆粒體在水中崩塌的速度分布隨著顆粒體深度增加而減少,水槽壁面處顆粒體呈現SSH (Sidewall Stabilized Heap)流態;(2)流體網格尺寸為顆粒粒徑3倍時,顆粒體流速模擬結果與實驗結果較吻合;(3)不考慮虛擬質量力模型,Gidaspow, Bezburuah & Ding與Di Felice阻力模型的預測結果與實驗結果較相近;(4)考慮虛擬質量力模型的預測結果與實驗結果較相近,且虛擬質量力對顆粒體速度的影響隨著顆粒體深度增加而減少;(5)水槽中心處顆粒體的平移速度大於壁面處顆粒體的平移速度,顆粒體垂直水槽方向的旋轉速度大於水平與重力方向的旋轉速度,表示顆粒體主要在水槽平面上轉動。
摘要(英) The purpose of study is to investigate the collapse behavior of granular columns in water by using unresolved couple CFD-DEM model, and this model is validated against corresponding physical experiments. The compared physical properties included analyze velocity profile and volume flow rate of granular flows at the outlet. The study investigates the effects of fluid cell size, drag force model, and virtual mass force model. Key findings are highlighted below : (1) The velocity of granular flows decreases as the depth of granular flows increases, exhibiting the SSH rheology;(2) As the fluid cell size is about three times the particle diameter, the simulation results shows very agreement with the experimental results;(3) If the virtual mass force model is not considered, the simulation results for the Gidaspow, Bezburuah & Ding and Di Felice drag models are consistent with the experimental results;(4) The numerical models with the virtual mass force model match the experimental results, and the influence of virtual mass forces on the granular flow decreases with increasing flow depth;(5) The translational velocities of granular flows at the center of the tank are greater than those at the sidewalls. The angular velocities of granular flows about the out-of-plane direction are greater than those about the horizon and vertical directions, indicating that granular flows primarily lie in the plane.
關鍵字(中) ★ 水中顆粒體崩塌行為
★ 流體網格尺寸
★ 阻力模型
★ 虛擬質量力
關鍵字(英) ★ Unresolved CFD-DEM
★ granular column collapse in water
★ fluid cell size
★ drag force
★ virtual mass force
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 Unresolved CFD-DEM相關文獻 2
1-2-2 流體網格與粒徑比模擬相關文獻 2
1-2-3 雙向耦合驗證相關文獻 3
1-3 研究動機與目的 5
第二章 雙向耦合物理系統與研究方法 6
2-1 水中顆粒體崩塌實驗 6
2-2 雙向耦合物理模型 6
2-2-1 流體的控制方程式 6
2-2-1-1 Navier-stokes方程式 6
2-2-1-2 k-ε標準模型 8
2-2-1-3 浮力模型 8
2-2-2 顆粒體的控制方程式 9
2-2-2-1 三維剛體運動方程式 9
2-2-2-2 接觸力模型 9
2-2-3 流體與顆粒體相互作用力 11
2-2-3-1 阻力模型 12
2-2-3-2 虛擬質量力 13
2-3 CFD-DEM耦合電腦模擬 14
2-3-1流程框架 14
2-3-2臨界時間步 14
2-4 CFD-DEM耦合建模設置 15
2-4-1 顆粒與流體性質 15
2-4-2 顆粒生成與堆積 15
2-4-3 流體網格規劃與邊界條件 16
第三章 結果與討論 17
3-1 流體網格尺寸參數分析 18
3-1-1 速度分布 18
3-1-2 出口處體積流率 19
3-2 阻力模型的影響 20
3-2-1 速度分布 21
3-2-2 出口處體積流率 21
3-3虛擬質量力的影響 22
3-3-1 速度分布 22
3-3-2 出口處體積流率 25
3-4 崩塌顆粒流內部物理性質 26
3-4-1 顆粒體在崩塌時的表面型態 26
3-4-2 顆粒體內部平移速度分布 27
3-4-3 顆粒體內部旋轉速度分布 27
第四章 結論 28
參考文獻 30
附表 33
附圖 35
參考文獻 參考文獻
[1] B. Blais, M. Lassaignea, C. Goniva, L. Fradette, F. Bertrand, Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing, J. Comput. Phys. 318 (2016) 201-221.
[2] K.W. Chu, J. Chen, B. Wang, A.B. Yu, A. Vince, G.D. Barnett, P.J. Barnett, Understand solids loading effects in a dense medium cyclone: Effect of particle size by a CFD-DEM method, Powder Technol. 320 (2017) 594-609.
[3] Y. Sheng, M. Wang, L. Zhang, Q. Ren, Analysis of filtration process of 3-D mesh spacer filter by using CFD-DEM simulation, Powder Technol. 396 (2022) 785-793.
[4] Q. Zhu, D. Gou, H.K. Chan, A. Kourmatzis, R. Yang, Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations, Int. J. Pharm. 637 (2023) 122871.
[5] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71 (1992) 239-250.
[6] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1979) 47-65.
[7] S. Golshan, B. Esgandari, R. Zarghami, CFD-DEM and TFM Simulations of Spouted Bed, Chem. Eng. Trans. 57 (2017) 1249-1254.
[8] X.L. Zhao, S.Q. Li, G.Q. Liu, Q. Yao, J.S. Marshall, DEM simulation of the particle dynamics in two-dimensional spouted beds, Powder Technol. 184 (2008) 205-213.
[9] C. Moliner, F. Marchelli, N. Spanachi, A. Martinez-Felipe, B. Bosio, E. Arato, CFD simulation of a spouted bed:Comparison between the Discrete Element Method (DEM) and the Two Fluid Model (TFM), Chem. Eng. J. 377 (2019) 120466.
[10] A. Bérard, G.S. Patience, B. Blais, Experimental methods in chemical engineering: Unresolved CFD-DEM, Can. J. Chem. Eng. 98 (2020) 420-440.
[11] Y. Di, L. Zhao, J. Mao, A resolved CFD-DEM method based on the IBM for sedimentation of dense fluid-particle flows, Comput. Fluids 226 (2021) 104968.
[12] C.M. Boyce, D.J. Holland, S.A. Scott, J.S. Dennis, Limitations on Fluid Grid Sizing for Using Volume-Averaged Fluid Equations in Discrete Element Models of Fluidized Beds, Ind. Eng. Chem. Fund. 54 (2015) 10684-10697.
[13] A. Volk, U. Ghia, C. Stoltz, Effect of grid type and refinement method on CFD-DEM solution trend with grid size, Powder Technol. 311 (2017) 137-146.
[14] W.D. Fullmer, J. Musser, CFD-DEM solution verification: Fixed-bed studies, Powder Technol. 339 (2018) 760-764.
[15] A.E. Carlos Varas, E.A.J.F. Peters, J.A.M. Kuipers, CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics, Chem. Eng.- Sci. 169 (2017) 246-258.
[16] K. Lv, F. Min, J. Zhu, B. Ren, X. Bai, C. Wang, Experiments and CFD-DEM simulations of fine kaolinite particle sedimentation dynamic characteristics in a water environment, Powder Technol. 382 (2021) 60-69.
[17] Y. He, A.E. Bayly, A. Hassanpour, Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows, Powder Technol. 325 (2018) 620-631.
[18] C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker, Models, algorithms and validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid. Dy. 12 (2012) 140-152.
[19] F. Marchelli, Q. Hou, B. Bosio, E. Arato, A. Yu, Comparison of different drag models in CFD-DEM simulations of spouted beds, Powder Technol. 360 (2020) 1253-1270.
[20] L. Zhou, L. Zhang, L. Bai, W. Shi, W. Li, C. Wang, R. Agarwal, Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models, RSC Adv. 7 (2017) 12764-12774.
[21] H. Zbib, M. Ebrahimi, F. Ein-Mozaffari, A. Lohi, Comprehensive analysis of fluid-particle and particle-particle interactions in a liquid-solid fluidized bed via CFD-DEM coupling and tomography, Powder Technol. 340 (2018) 116-130.
[22] 陳定偉,以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為,國立中央大學機械工程學系碩士論文 (2017)。
[23] D.A. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15 (1983) 261-291.
[24] B. E. Launder, D. B. Spalding, Lectures in Mathematical Models of Turbulence, AP, London, England. (1972).
[25] H. Hertz, Über die Berührung fester elastischer Körper, J. Reine. Angew. Math. 92 (1881) 156-171.
[26] T. Schwager, T. Pöschel, Coefficient of restitution and linear–dashpot model revisited, Granul. Matter. 9 (2007) 465-469.
[27] C. Wen, Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. S. Ser. 162 (1966) 100-111.
[28] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach, Fluidization VII (1992) 75-82.
[29] L. Huilin, D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures, Chem. Eng. Sci. 58 (2003) 3777-3792.
[30] R. Di Felice, The voidage function for fluid-particle interaction systems, Int. J. Multiphas. Flow 20 (1994) 153-159.
[31] E.E. Paladino, Estudo do escoamento multifásico em medidores de vazão do tipo pressão diferencial, PhD thesis, Universidade Federal de Santa Catarina, SC (2005).
[32] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77 (1993) 79-87.
[33] H.T. Chou, C.F. Lee, Y.C. Chung, S.S. Hsiau, Discrete element modelling and experimental validation for the falling process of dry granular steps, Powder Technol. 231 (2012) 122-134.
[34] N. Taberlet, P. Richard, A. Valance, W. Losert, J. M. Pasini, J. T. Jenkins, R. Delannay, Super Stable Granular Heap in a Channel, Phys. Rev. Lett. 91 (2004) 264301-1-4.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2023-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明