參考文獻 |
[1] Z.C. Lia, Z.J. Pei, G.R. Fisher, Simultaneous double side grinding of silicon wafers: a literature review, International Journal of Machine Tools and Manufacture, 46 (2006), 1449-1458.
[2] Z.J. Pei, G.R. Fisher, J. Liu, Grinding of silicon wafers: A review from historical perspectives, International Journal of Machine Tools and Manufacture, 48 (2008), 1297-1307.
[3] G. Majumdar, M. Chakraborty, M. S. J. Hashmi, Fine Grinding of Semiconductor Materials: Review of Past and Current Practices, Materials Science and Materials Engineering, (2016), 1-13.
[4] E. Brinksmeier, Y. Mutlugünes, F. Klocke, J.C. Aurich, P. Shore, H. Ohmori, Ultra-precision grinding, CIRP Annals, 59 (2010), 652-671.
[5] J.H. Liu, Z.J. Pei, G.R. Fisher, Grinding wheels for manufacturing of silicon wafers: A literature review, International Journal of Machine Tools and Manufacture, 47 (2007), 1-13.
[6] Z.J Pei, A. Strasbaugh, Fine grinding of silicon wafers: designed experiments, International Journal of Machine Tools and Manufacture, 42 (2002), 395-404.
[7] J.A. Couey, E.R. Marsh, B.R. Knapp, R.R. Vallance, In-process force monitoring for precision grinding semiconductor silicon wafers, International Journal of Manufacturing Technology and Management, 7 (2005), 430-440.
[8] D. Pähler, Measurement of local contact zone forces in rotational grinding of silicon wafers, International Journal of Mechatronics and Manufacturing Systems, 4 (2011), 511-539.
[9] F. Qin, L. Zhang, P. Chen, T. An, Y. Dai, Y. Gong, Z. Yi, H. Wang, In situ wireless measurement of grinding force in silicon wafer self-rotating grinding process, Mechanical Systems and Signal Processing, 154 (2021), 107550.
[10] H. Tao, Y. Liu, D. Zhao, X. Lu, Prediction and measurement for grinding force in wafer self-rotational grinding, International Journal of Mechanical Sciences, 258 (2023), 108530.
[11] Z.J Pei, A. Strasbaugh, Fine grinding of silicon wafers, International Journal of Machine Tools and Manufacture, 41 (2001), 659-672.
[12] W. Sun, Z.J. Pei, G.R. Fisher, Fine grinding of silicon wafers: effects of chuck shape on grinding marks, International Journal of Machine Tools and Manufacture, 45 (2005), 673-686.
[13] H. Li, T. Yu, L. Zhu, W. Wang, Modeling and simulation of grinding wheel by discrete element method and experimental validation, The International Journal of Advanced Manufacturing Technology, 81 (2015), 1921-1938.
[14] B. Luo, Q. Yan, J. Pan, J. Lu, Z. Huang, Influences of processing parameters on metal-bonded diamond wheel wear when grinding a sapphire wafer, Diamond and Related Materials, 113 (2021), 108275.
[15] Z.J. Pei, S.R. Billingsley, S. Miura, Grinding induced subsurface cracks in silicon wafers, International Journal of Machine Tools and Manufacture, 39 (1999), 1103-1116.
[16] Z.J Pei, A study on surface grinding of 300 mm silicon wafers, International Journal of Machine Tools and Manufacture, 42 (2002), 385-393.
[17] A. Haapalinna, S. Nevas, D. Pähler, Rotational grinding of silicon wafers—sub-surface damage inspection, Materials Science and Engineering: B, 107 (2004), 321-331.
[18] H.T. Young, H.T. Liao, H.Y. Huang, Surface integrity of silicon wafers in ultra precision machining, The International Journal of Advanced Manufacturing Technology, 29 (2006), 372-378.
[19] Y. Yang, K.D. Munck, R.C. Teixeira, B. Swinnen, B. Verlinden, I.D. Wolf, Process induced sub-surface damage in mechanically ground silicon wafers, Semiconductor Science and Technology, 23 (2008), 075038.
[20] J. Sun, F. Qin, P. Chen, T. An, Z. Wang, Edge chipping of silicon wafers in rotating grinding, International Conference on Electronic Packaging Technology, (2016), 1099-1103.
[21] L. Zhang, P. Chen, T. An, Y. Dai, F. Qin, Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process, Current Applied Physics, 19 (2019), 570-581.
[22] J. Yin, Q. Bai, S. Goel, P. Zhou, B. Zhang, An analytical model to predict the depth of sub-surface damage for grinding of brittle materials, CIRP Journal of Manufacturing Science and Technology, 33 (2021), 454-464.
[23] Z. J. Pei, A. Strasbaugh, Fine Grinding of Silicon Wafers: Grinding Marks, ASME International Mechanical Engineering Congress & Exposition, (2002), 311-320.
[24] Y. Zhang, D. Wang, W. Gao, R. Kang, Residual stress analysis on silicon wafer surface layers induced by ultra-precision grinding, Rare Metals, 30 (2011), 278–281.
[25] S. Gao, Z. Dong, R. Kang, B. Zhang, D. Guo, Warping of silicon wafers subjected to back-grinding process, Precision Engineering, 40 (2015), 87-93.
[26] J. Sun, F. Qin, P. Chen, T. An, Residual stress distribution in wafers ground by different grinding parameters, International Conference on Electronic Packaging Technology, (2017), 327-331.
[27] C. J. Coetzee, Review: Calibration of the discrete element method, Powder Technology, 310 (2017), 104-142.
[28] Y.H. Wang, S.C. Leung, A particulate-scale investigation of cemented sand behavior, Canadian Geotechnical Journal, 45 (2008), 29-44.
[29] L. Benvenuti, C. Kloss, S. Pirker, Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments, Powder Technology, 219 (2016), 456-465.
[30] M. Rackl, K.J. Hanley, A methodical calibration procedure for discrete element models, Powder Technology, 307 (2017), 73-83.
[31] J. Yoon, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, International Journal of Rock Mechanics and Mining Sciences, 44 (2007), 871-889.
[32] K.J. Hanley, C. O′Sullivan, J.C. Oliveira, K. Cronin, E.P. Byrne, Application of Taguchi methods to DEM calibration of bonded agglomerates, Powder Technology, 210 (2011), 230-240.
[33] S. Chehreghani, M. Noaparast, B. Rezai, S.Z. Shafaei, Bonded-particle model calibration using response surface methodology, Particuology, 32 (2017), 141-152.
[34] P. Zhang, X. Sun, X. Zhou, Y. Zhang, Experimental simulation and a reliable calibration method of rockfill microscopic parameters by considering flexible boundary, Powder Technology, 396 (2022), 279-290.
[35] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29 (1979), 47-65.
[36] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, 41 (2004), 1329-1364.
[37] L. Verlet, Computer EXPERIMENTS on classical fluids. I. thermodynamical properties of lennard-jones molecules, Physical Review, 159 (1976), 98-103.
[38] PFC3D 6.0 Documentation, https://docs.itascacg.com/pfc600/pfc/docproject/index.html, Itasca, (2019).
[39] B. Durakovic, Design of Experiments Application, Concepts, Examples: State of the Art, Periodicals of Engineering and Natural Sciences, 5 (2017), 421-439.
[40] K.A.M. Said, M.A.M. Amin, Overview on the Response Surface Methodology (RSM) in Extraction Processes, Journal of Applied Science and Engineering, 2 (2015), 8-17.
[41] D.C. Montgomery, Design and analysis of experiments, 8th edition, John Wiley & Sons Inc., (2013).
[42] 葉怡成,實驗設計法-製程與產品最佳化,五南圖書版股份有限公司,台北市,民國九十年。
[43] P. Sahoo, T.K. Barman, ANN modelling of fractal dimension in machining, Mechatronics and Manufacturing Engineering, (2012), 159-226.
[44] B. Ait-Amir, P. Pougnet, A.E. Hami, Meta-Model Development, Embedded Mechatronic Systems 2, (2015), 151-179.
[45] Silicon , https://reurl.cc/7MYgjl, MatWeb.
[46] 12 inch wafer, https://www.latentek.com.tw/, 拓磊科技
[47] FCC unit cell, https://zhuanlan.zhihu.com/p/28411848.
[48] 許嘉晉,以離散元素法配合顆粒鍵接理論探討矽晶棒線切割物理機制,論文,國立中央大學機械工程學系 (2023).
[49] Y.C. Chung, Granular stresses in granular flows subjected to different obstacles, International Journal of Mechanical Sciences, 247 (2023), 108190.
[50] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Applied Mathematical Modelling, 74 (2011), 540-568.
[51] Y.C. Chung, J.Y. Ooi, Benchmark tests for verifying discrete element modelling codes at particle impact level, Granular Matter, 13 (2011), 643-656.
[52] Y.C. Chung, Z.H. Yang, C.K. Lin, Modelling micro-crack initiation and propagation of crystal structures with microscopic defects under uniaxial tension by discrete element method, Powder Technology, 315 (2017), 445-476. |