博碩士論文 110323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.149.230.171
姓名 許子謙(Zi-Qian Xu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用上照式面投影微光固化技術開發具有液面拘束器之軟性基板製造系統
(Development of Flexible Substrate Fabrication System with Constraint Surface Device by Top-down Projection Micro Stereolithography Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-2-1以後開放)
摘要(中) 軟性印刷電路板(Flexible Printed Circuit Board, FPCB)不同於一般的印刷電路板(Printed Circuit Board, PCB),因為其重量輕、厚度薄、可彎曲等特性,常用來作為承載電子元件並進行通訊的平台。投影微立體光固化技術(Projection Micro Stereolithography, PμSL)為一種低成本且高效率的技術,能夠列印出具有微米級的複雜三維結構。透過其
層層堆疊成型的特性,製造者可以在電路基板內部設計更複雜的電路,達到更加客製化的目的,並且能夠選擇更加具有撓曲性的材料,供使用者在操作的過程中能夠更加靈活。
本研究致力於使用積層製造方法列印軟性基板,為了達成這個目的設計了一套上照式光固化系統,並且開發了以 C#作為編譯語言之人機介面方面後續使用者操作。在光學照明系統方面,選用了內建數位微鏡裝置(Digital Micromirror Device, DMD)之數位光處理(Digital Light Process, DLP)光機作為投影光源,並且在出光處加裝了具有微縮化光源之光路將投影光源微縮至我們所想要的面積。為了控制列印成品的層厚,本研究特別
設計了液面拘束器,搭配工作平台的升降來控制液面高度。為了避免列印過程中因為工作平台傾斜或投影像平面失焦,造成列印成品失真的情況,本研究亦另外設計了工作平台水平校正流程以及 DLP 光機自動對焦流程來改善這個情況。
最後本研究以矽膠樹脂作為列印材料,透過觀察樹脂在不同曝光情況下的列印結果來制定相應的曝光參數。最後透過這些曝光參數成功列印分別為多孔特徵以及具有 LED線路之軟性基板列印結果,驗證了列印系統的可行性。
摘要(英) Flexible Printed Circuit Board (FPCB) is different from ordinary Printed Circuit Board (PCB) because of its light weight, thin thickness, bendability and other characteristics. It is often used to carry electronic components and communicate. platform. Projection Micro
Stereolithography (PμSL) is a low-cost and high-efficiency technology that can print complex three-dimensional structures at the micron level. Through its layer-by-layer stacking characteristics, manufacturers can design more complex circuits inside the circuit substrate to achieve more customized purposes, and more flexible materials can be selected so that users can be more flexible during operation.
This research is dedicated to printing flexible substrates using the Additive Manufacturing method. To achieve this goal, a top-illumination light curing system was designed, and subsequent user operations in human-machine interface using C# as the compiled language were developed. In terms of the optical lighting system, a Digital Light Process(DLP) light engine with a built-in Digital Micromirror Device(DMD) chip was selected as the projection light source, and a light path with a miniaturized light source was installed at the light outlet to shrink the projection light source to the area we want. In order to control the layer thickness of the printed product, this study specially designed a liquid level restrainer, which is used to control the liquid level height in conjunction with the lifting of the work platform. In order to avoid distortion of the printed product due to the tilt of the work platform or the out-of-focus projection image plane during the printing process, this study also designed a work platform level correction process and a DLP light engine autofocus process to improve this situation.
Finally, this study uses silicone resin as the printing material, and determines the corresponding exposure parameters by observing the printing results of the resin under different exposure conditions. Finally, the printing results of porous features and flexible substrates with LED circuits were successfully printed using these exposure parameters, which verified the feasibility of the printing system.
關鍵字(中) ★ 積層製造
★ 微光固化
★ 液面拘束器
★ 軟性基板
關鍵字(英) ★ Additive manufacturing
★ Micro-stereolithography
★ Constraint surface device
★ Flexible substrate
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 10
1-4 論文架構 11
第二章 研究與理論說明 13
2-1 一般軟性電路板製程簡介 13
2-2 光子吸收現象與光致聚合反應簡介 14
2-3 比爾朗伯爾定律簡介 16
2-4 光固化成型技術簡介 17
2-5 上照式與下照式光固化技術之比較 21
2-6 平台之水平校正演算法 22
2-7 三維生物列印機簡介 24
第三章 系統架構與研究方法 29
3-1 列印系統架構 29
3-2 液面拘束器介紹 40
3-3 機台使用之馬達PID參數調整方法 42
3-4 工作平台水平校正與DLP光機自動對焦流程 43
3-5 列印路徑控制方法 50
3-6 人機介面 53
3-7 實驗流程與方法 58
第四章 實驗結果與討論 65
4-1 系統校正結果 65
4-2 DLP曝光強度與樹脂曝光時間分析 69
4-3 列印解析度與成型表面平整度分析 75
4-4 本系統列印之結果 83
第五章 結論與未來展望 89
5-1 結論 89
5-2 未來展望 89
參考文獻 91
參考文獻 [1] A. C. Marques, J. M. Cabrera and C. D. Malfatti, “Printed Circuit Boards: A Review on the Perspective of Sustainability”, Journal of Environmental Management, Vol. 131, pp. 298-306, 2013.
[2] W. C. Leong, M. Z. Abdullah and C. V. Khor, “Application of Flexible Printed Circuit Board (FPCB) in Personal Computer Motherboards: Focusing on Mechanical Performance”, Microelectronics Reliability, Vol. 52, pp. 744-756, 2012.
[3] H. Y. Shi and H. Li, “Challenges and Developments of Micro Drill Bit for Printed Circuit Board: A Review”, Circuit World, Vol. 39, pp. 75-81, 2013.
[4] J. C. Aurich, M. Bohley, I. G. Reichenbach and B. Kirsch, “Surface Quality in Micro Milling: Influences of Spindle and Cutting Parameters”, CIRP Annals-Manufacturing
Technology, Vol. 66, pp. 101-104, 2017.
[5] H. Kodama, “Automatic Method for Fabricating a Three-Dimensional Plastic Model with Photo-Hardening Polymer”, Review of Scientific Instruments, Vol. 52, pp. 1770-1773, 1981.
[6] C. Sun, N. Fang, D. M. Wu and X. Zhang, “Projection Micro-Stereolithography using Digital Micro-Mirror Dynamic Mask”, Sensors and Actuators A: Physical, Vol. 121, pp.
113-120, 2005.
[7] Q. Ge, Z. Q. Li, Z. L. Wang, K. Kowsari, W. Zhang, X. N. He, J. L. Zhou and N. X. Fang, “ Projection Micro Stereolithography Based 3D Printing and Its Applications”,
International Journal of Extreme Manufacturing, Vol. 2, 022004, 2020.
[8] ASTM, F2792-12a, “Standard Terminology for Additive Manufacturing Technologies”, 2012.
[9] V. Petrovic, J. V. H. Gonzalez, O. J. Ferrando, J. D. Gordillo, J. R. B. Puchades and L. P. Grinan, “Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies”, International Journal of Production Research, Vol. 49, pp. 1061-1079, 2011.
[10] J. F. Rusling, “Developing Microfluidic Sensing Devices using 3D Printing”, ACS Sensors, Vol. 3, pp. 522-526, 2018.
[11] M. O. Wang, C. E. Vorwald, M. L. Dreher, E. J. Mott, M. H. Cheng, A. Cinar, H. Mehdizadeh, S. Somo, D. Dean, E. M. Brey and J. P. Fisher, “Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering”, Advanced Materials, Vol. 27, pp. 138-144, 2015.
[12] P. Zorlutuna, J. H. Jeong, H. Kong and R. Bashir, “Stereolithography-Based Hydrogel Microenvironments to Examine Cellular Interactions”, Advanced Functional Materials, Vol. 21, pp. 3642-3651, 2011.
[13] W. K. Swainson, “Method, Medium and Apparatus for Producing Three-Dimensional Figure Product”, U.S. Patents, No. US4041476A, 1977.
[14] C. W. Hull, “Apparatus for Production of Three-Dimensional Objects by Stereolithography”, U.S. Patent, No. US4575330A, 1984.
[15] M. Pagac, J. Hajnys, Q. P. Ma, L. Jancar, J. Jansa, P. Stefek and J. Mesicek, “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future
Trends of 3D Printing”, Polymers, Vol. 13, 598, 2021.
[16] X. Zhang, X. N. Jiang and C. Sun, “Micro-Stereolithography of Polymeric and Ceramic Microstructures”, Sensors and Actuators, Vol. 77, pp. 149-156, 1999.
[17] E. V. Fudim, “Method and Apparatus for Production of Three-Dimensional Objects by Photosolidification”, U.S. Patent, No. US4999143A, 1988.
[18] A. Bertsch, S. Zissi, J. Y. Jezequel, S. Corbel and J. C. Andre, “Microstereophotolithography using A Liquid Crystal Display as Dynamic Mask-Generator”, Microsystem Technologies, Vol. 3, pp. 42-47, 1997.
[19] S. Monneret, V. Loubere and S. Corbel, “Microstereolithography using A Dynamic Mask Generator and A Noncoherent Visible Light Source”, Vol. 3680, pp. 553-561, 1999.
[20] M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield and C. Chatwin, “Microfabrication by Use of A Spatial Light Modulator in the
Ultraviolet: Experimental Results”, Optics Letters, Vol. 24, pp. 549-550, 1999.
[21] M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young and J. D. Richardson, “A Novel High-Accuracy Microstereolithography
Method Employing An Adaptive Electro-Optic Mask”, Journal of Materials Processing Technology, Vol. 107, pp. 167-172, 2000.
[22] J. M. Younse, “Projection Display Systems Based on the Digital Micromirror Device (DMD)”, Society of Photo-Optical Instrumentation Engineers, Vol. 2641, pp. 64-75, 1995.
[23] J. W. Choi, R. Wicker, S. Lee, K. Choi, C. S. Ha and I. Chung, “Fabrication of 3D Biocompatible/Biodegradable Micro-Scaffolds using Dynamic Mask Projection Microstereolithography”, Journal of Materials Processing Technology, Vol. 209, pp. 5494-5503, 2009.
[24] P. Hagmann and W. Ehrfeld, “Fabrication of Microstructures of Extreme Structural Heights by Reaction Injection Molding”, International Polymer Processing, Vol. 4, pp. 188-195, 1989.
[25] X. Y. Zheng, J. Deotte, M. P. Alonso, G. R. Farquar, T. H. Weisgraber, S. Gemberling, H. Lee, N. Fang and C. M. Spadaccini, “Design and Optimization of A Light-Emitting
Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System”, Review of Scientific Instruments, Vol. 83, 125001, 2012.
[26] V. K. Goyal, E. R. Johnson and C. G. Davila, “Irreversible Constitutive Law for Modeling the Delamination Process using Interfacial Surface Discontinuities”, Composite Structures, Vol. 65, pp. 289-305, 2004.
[27] I. Gibson., D. W. Rosen and B. Stucker, “Additive Manufacturing Technologies:Springer”, 2010.
[28] G. B. Shao, H. O. T. Ware, J. G. Huang, R. H. Hai, L. Q. Li and C. Sun, “3D Printed Magnetically-Actuating Micro-Gripper Operates in Air and Water”, Additive Manufacturing, Vol. 38, 101834, 2021.
[29] X. Song, Y. Chen, T. W. Lee, S. H. Wu and L. X. Cheng, “Ceramic Fabrication using Mask-Image-Projection-Based Stereolithography Integrated with Tape-Casting”, Journal
of Manufacturing Processes, Vol. 20, pp. 456-464, 2015.
[30] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski and J. M. Desimone, “Continuous Liquid Interface Production of 3D Objects”, Science, Vol. 347, pp. 1349-1352, 2015.
[31] M. M. Emami, F. Barazandeh and F. Yaghmaie, “An Analytical Model for Scanning-Projection Based Stereolithography”, Journal of Materials Processing
Technology, Vol. 219, pp. 17-27, 2015.
[32] R. He, J. Landowne, J. Currie, J. Amoah, W. T. Shi, D. Yunus and Y. L. Liu, “Three-Dimensional Printing of Large Objects with High Resolution by Scanning Lithography”, International Journal of Advanced Manufacturing Technology, Vol. 105, pp. 4147-4157, 2019.
[33] S. H. Jang, S. T. Oh, I. H. Lee, H. C. Kim and H. Y. Cho, “3-Dimensional Circuit Device Fabrication Process using Stereolithography and Direct Writing”, International Journal of Precision Engineering and Manufacturing, Vol. 16, pp. 1361-1367, 2015.
[34] M. Vatani, Y. F. Lu, E. D. Engeberg and J. W. Choi, “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors”, International Journal of
Precision Engineering and Manufacturing, Vol. 16, pp. 1375-1383, 2015.
[35] 陳柏任,「組織工程應用之平面與旋轉兩用式三維生物列印機開發」,國立中央大學,碩士論文,民國 111 年。
[36] Y. M. Huang, S. Kuriyama and C. P. Jiang, “Fundamental Study and Theoretical Analysis in A Constrained-Surface Stereolithography System”, International Journal of Advanced
Manufacturing Technology, Vol. 24, pp. 361-369, 2004.
[37] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩,「3D 列印:積層製造技術與應用」,新北市:全華圖書,2018 年。
[38] J. Bennett, “Measuring UV Curing Parameters of Commercial Photopolymers Used in Additive Manufacturing”, Additive Manufacturing, Vol. 18, pp. 203-212, 2017.
[39] J. G. Huang, Q. Qin and J. Wang, “A Review of Stereolithography: Processes and Systems”, Processes, Vol. 8, 1138, 2020.
[40] Z. Wang, W. G. Yang, Y. T. Qin, W. F. Liang, H. B. Yu and L. Q. Liu, “Digital Micro-Mirror Device -Based Light Curing Technology and Its Biological Applications”, Optics and Laser Technology, Vol. 143, 107344, 2021.
[41] O. Santoliquido, P. Colonabo and A. Ortona, “Additive Manufacturing of Ceramic Components by Digital Light Processing: A Comparison Between the “Bottom-Up” and
the “Top-Down” Approaches”, Journal of the European Ceramic Society, Vol. 39, pp. 2140-2148, 2019.
[42] Thorlabs 官方網站,
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5011&pn=ne10b#812。
[43] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers”, Transactions of the American Society of Mechanical Engineers, Vol. 64, pp. 759-765, 1942.
[44] 陳麒九,「組織工程用擠出式積層製造技術之轉角積料分析與控制發」,國立中央大學,碩士論文,民國 111 年。
[45] 江紹瑜,「使用面投影微立體光固化技術開發卡匣式陶瓷基板生胚製造系統」,國立中央大學,碩士論文,民國 111 年。
[46] P. D. Robertson, F. W. Wise, A. N. Nasr, A. R. Neureuther and C. H. Ting, “Proximity Effects and Influences of Nonuniform Illumination in Projection Lithography”, SPIE,
Vol. 334, pp. 37-43, 1982.
[47] Q. Zheng, J. Y. Zhou, Q. M. Chen, L. Lei, K. H. Wen and Y. M. Hu, “Rapid Prototyping of A Dammann Grating in DMD-Based Maskless Lithography”, IEEE Photonics Journal,
Vol. 11, 2400410, 2019.
[48] Chitubox 官方網站,
https://www.chitubox.com/zh-Hans/academy/advanced/a-brief-overview-of-thermal-stress-in-resin-3d-printing。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2024-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明