參考文獻 |
[1] S. Patel and T. Sobh, “Task based synthesis of serial manipulators,” J. Adv. Res., vol. 6, no. 3, pp. 479–492, 2015, doi: https://doi.org/10.1016/j.jare.2014.12.006.
[2] C. Shen, H. Qu, S. Guo, and X. Li, “Kinematics Analysis and Singularity Avoidance of a Parallel Mechanism with Kinematic Redundancy,” Chinese J. Mech. Eng., vol. 35, no. 1, p. 113, 2022, doi: 10.1186/s10033-022-00793-2.
[3] H. Shen, Y. Zhao, G. Wu, J. Li, and D. Chablat, “Kinematic design of a translational parallel mechanism based on sub-kinematic chain determined workspace superposition,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., p. 095440622110046, May 2021, doi: 10.1177/09544062211004653.
[4] C. Reinaldo, S. N. Phu, T. Essomba, and L. Nurahmi, “Kinematic Comparisons of Hybrid Mechanisms for Bone Surgery: 3-PRP-3-RPS and 3-RPS-3-PRP,” Machines, vol. 10, no. 11, 2022, doi: 10.3390/machines10110979.
[5] L. Romdhane, “Design and analysis of a hybrid serial-parallel manipulator,” Mech. Mach. Theory, vol. 34, no. 7, pp. 1037–1055, 1999, doi: https://doi.org/10.1016/S0094-114X(98)00079-2.
[6] Q. Liu, W. Tian, B. Li, and Y. Ma, “Kinematics of a 5-axis hybrid robot near singular configurations,” Robot. Comput. Integr. Manuf., vol. 75, p. 102294, 2022, doi: https://doi.org/10.1016/j.rcim.2021.102294.
[7] J.-P. Merlet, C. M. Gosselin, and N. Mouly, “Workspaces of planar parallel manipulators,” Mech. Mach. Theory, vol. 33, no. 1, pp. 7–20, 1998, doi: https://doi.org/10.1016/S0094-114X(97)00025-6.
[8] C. Reinaldo, T. Essomba, and L. Nurahmi, “A New Index for the Evaluation of Mechanism Workspace: Application to Six-DoF Architectures BT - Advances in Mechanism and Machine Science,” 2023, pp. 713–720.
[9] X.-J. Liu, J. Wang, and G. Pritschow, “Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms,” Mech. Mach. Theory, vol. 41, no. 2, pp. 145–169, 2006, doi: https://doi.org/10.1016/j.mechmachtheory.2005.05.004.
[10] T. Essomba and L. Nguyen Vu, “Kinematic analysis of a new five-bar spherical decoupled mechanism with two-degrees of freedom remote center of motion,” Mech. Mach. Theory, vol. 119, pp. 184–197, 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2017.09.010.
[11] M. A. Laribi, L. Romdhane, and S. Zeghloul, “Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace,” Mech. Mach. Theory, vol. 42, no. 7, pp. 859–870, 2007, doi: https://doi.org/10.1016/j.mechmachtheory.2006.06.012.
[12] S. HUDA and Y. TAKEDA, “Kinematic Analysis and Synthesis of a 3-URU Pure Rotational Parallel Mechanism with Respect to Singularity and Workspace,” J. Adv. Mech. Des. Syst. Manuf., vol. 1, no. 1, pp. 81–92, 2007, doi: 10.1299/jamdsm.1.81.
[13] M. Z. A. Majid, Z. Huang, and Y. L. Yao, “Workspace Analysis of a Six-Degrees of Freedom, Three-Prismatic- Prismatic-Spheric-Revolute Parallel Manipulator,” Int. J. Adv. Manuf. Technol., vol. 16, no. 6, pp. 441–449, 2000, doi: 10.1007/s001700050176.
[14] S. Nguyen Phu, T. Essomba, I. Idram, and J.-Y. Lai, “Kinematic analysis and evaluation of a hybrid mechanism for computer assisted bone reduction surgery,” Mech. Sci., vol. 10, no. 2, pp. 589–604, 2019, doi: 10.5194/ms-10-589-2019.
[15] T. Essomba and S. N. Phu, “Kinematic design of a hybrid planar-tripod mechanism for bone reduction surgery,” Mech. Ind., vol. 21, no. 4, 2020, [Online]. Available: https://doi.org/10.1051/meca/2020030.
[16] I. A. Bonev and J. Ryu, “A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. Mach. Theory, vol. 36, no. 1, pp. 15–28, 2001, doi: https://doi.org/10.1016/S0094-114X(00)00032-X.
[17] S. Kucuk and Z. Bingul, “Comparative study of performance indices for fundamental robot manipulators,” Rob. Auton. Syst., vol. 54, no. 7, pp. 567–573, 2006, doi: https://doi.org/10.1016/j.robot.2006.04.002.
[18] G. T. Pond and J. A. Carretero, “Quantitative Dexterous Workspace Comparison of Serial and Parallel Planar Mechanisms,” in Parallel Manipulators, J.-H. Ryu, Ed. Rijeka: IntechOpen, 2008.
[19] H. Liu, T. Huang, A. Kecskemethy, and D. Chetwynd, “A generalized approach for computing the transmission index of parallel mechanisms,” Mech. Mach. Theory, vol. 74, pp. 245–256, 2014, doi: 10.1016/j.mechmachtheory.2013.12.012.
[20] Yaskawa America, “MPP3H|MPP3S ROBOTS,” 2015. https://cdn2.hubspot.net/hubfs/366775/Blog_Robots/MPP3H_MPP3S.pdf?t=1539326062420 (accessed Dec. 13, 2023).
[21] F. A. Corporation, “M-1000iA.” https://www.fanucamerica.com/docs/default-source/robotics-files/fanuc-robot-data-sheets/fanuc-m-1000ia-data-sheet.pdf (accessed Dec. 13, 2023).
[22] S. N. Phu and T. Essomba, “Kinematic analysis of an augmented 3-RPSP tripod mechanism with six degrees of freedom for bone reduction surgery,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 8, pp. 4059–4072, 2022, doi: 10.1177/09544062211048044.
[23] M. H. Abedinnasab, F. Farahmand, and J. Gallardo-Alvarado, “The Wide-Open Three-Legged Parallel Robot for Long-Bone Fracture Reduction,” J. Mech. Robot., vol. 9, no. 1, Jan. 2017, doi: 10.1115/1.4035495.
[24] S. H. H. Zargarbashi, W. Khan, and J. Angeles, “The Jacobian condition number as a dexterity index in 6R machining robots,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp. 694–699, 2012, doi: https://doi.org/10.1016/j.rcim.2012.04.004.
[25] G. Zhu, W. Guo, Y. Han, and Y. Li, “A comprehensive evaluation framework for kinematic performance of parallel mechanisms based on joint transmissibility and multi-attribute decision making methods,” Mech. Mach. Theory, vol. 181, p. 105217, 2023, doi: https://doi.org/10.1016/j.mechmachtheory.2022.105217.
[26] M. Díaz-Rodríguez, P. Araujo-Gómez, and O. A. González-Estrada, “Performance Index for Dimensional Synthesis of Robots for Specific Tasks,” Robotics, vol. 11, no. 2, 2022, doi: 10.3390/robotics11020051.
[27] J. P. Merlet, “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots,” J. Mech. Des., vol. 128, no. 1, pp. 199–206, 2005, doi: 10.1115/1.2121740.
[28] Z. Zhang, L. Wang, and Z. Shao, “Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion,” Mech. Mach. Theory, vol. 130, pp. 86–108, 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2018.08.011.
[29] M. Husty and C. Gosselin, “On the Singularity Surface of Planar 3-RPR Parallel Mechanisms,” Mech. Based Des. Struct. Mach., vol. 36, no. 4, pp. 411–425, 2008, doi: 10.1080/15397730802411885. |