博碩士論文 110327024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.144.114.187
姓名 張文彥(Wen-Yen Chang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種應用於繞射式光波導型擴增實境裝置的微LED型投影顯示器之研究
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-13以後開放)
摘要(中) 隨著元宇宙概念的提出,周遭相關產業也隨之蓬勃發展,而透過虛擬實境的技術可以提供一種現實與虛擬世界溝通的方式。AR智慧眼鏡為現階段技術開發的重點之一,其中以光波導整合元件搭配微LED型投影顯示器為最具潛力的解決方案。本研究建立一套基於光分佈函數理論的顯示器光學品質之評價演算技術,包括對比度以及系統總能量使用效率。透過模擬軟體與所建立的演算技術快速收斂微LED型投影顯示器應用於具EPE技術之SRG型光波導系統的不同結構配置以及參數,得到相對最佳的系統總能量使用效率。由模擬軟體分析結果得知顯示器架構黑色光阻陣列、微透鏡陣列以及孔徑遮光板可以有效抑制光學串擾現象,對比度由5:1提升至無限大比一,透過光波導系統角度出光率分佈特性調控顯示器結構參數將光源能量調製到有效角度範圍內,於雙層微透鏡陣列架構且基板厚度為1.42 ??以及2.33 ??時可以將總能量使用效率由1.26%提升至2.63%,提升52%,在不同實施例中驗證本研究提出的演算技術並透過軟體優化模組擬定一具權重分佈特性之最佳化策略,於單層膠合型微透鏡陣列架構時可以將總能量使用效率由2.44%提升至2.57%,提升5%,最後探討EPE技術的可行性以及光學系統影像的均勻度。
摘要(英) With the emergence of the Metaverse concept, related industries have flourished, and virtual reality technology provides a means of communication between the real and virtual worlds. Augmented Reality (AR) smart glasses, incorporating waveguide-integrated components and microLED-based projection displays, are a key focus of current technological development. This study establishes an evaluation algorithm based on the optical distribution function theory for assessing the optical quality of displays, including contrast ratio and system total energy efficiency. By utilizing simulation software and the developed algorithm, the microLED-based projection display is efficiently optimized for different structural configurations and parameters within an surface relief grating (SRG)-type waveguide system employing the exit pupil expander (EPE) technique. The relative optimal system total energy efficiency is determined. Analysis of simulation software results reveals that the display architecture, with a black matrix array, micro-lens array, and aperture matrix, effectively suppresses optical crosstalk, improving the contrast ratio from 5:1 to infinity. By controlling the angular emission distribution characteristics of the waveguide system, display structural parameters modulate the energy of the light source within the effective angular range, In the case of a dual-layer micro-lens array architecture with substrate thicknesses of 1.42 ?? and 2.33 ??, the total energy efficiency was increased from 1.26% to 2.63%, resulting in a 52% improvement. The proposed algorithm technique was validated in different implementation scenarios, and an optimization strategy with weighted distribution characteristics was determined through a software optimization module. In the case of a single-layer doublet micro-lens array architecture, the total energy efficiency was increased from 2.44% to 2.57%, resulting in a 5% improvement. Finally, the feasibility of EPE technology and the uniformity of the optical system image are discussed.
關鍵字(中) ★ 光波導
★ 微LED型投影顯示器
★ 光學串擾
★ 能量使用效率
關鍵字(英) ★ Waveguide
★ MicroLED projection display
★ Optical crosstalk
★ Energy efficiency
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 4
1-3-1 微LED型投影顯示器 4
1-3-2 表面浮雕光柵光波導 7
1-3-3 具EPE技術之SRG型光波導系統模擬架構 11
1-4 論文架構 13
第二章 研究方法 14
2-1 基礎理論 14
2-1-1 光度學 14
2-1-2 幾何光學 16
2-1-3 圓錐曲面 20
2-2 數值模擬方法 21
2-2-1 嚴格耦合波分析法 22
2-2-2 雙向散射分佈函數 26
2-2-3 蒙地卡羅光線追跡法 27
2-3 光分佈函數理論 28
2-3-1 擬合函數 28
2-3-2 平均絕對百分比誤差 29
2-4 顯示器性能評價函數 29
2-5 研究流程 30
第三章 微LED型投影顯示器 32
3-1 顯示器規格 32
3-2 顯示器結構設計與分析 33
第四章 SRG型光波導出光率角度權重分佈 45
4-1 耦入光柵結構BSDF繞射效率 45
4-2 耦出光柵結構BSDF繞射效率 48
4-3 SRG光波導系統出光效率 50
4-4 評價函數定義與計算 61
第五章 微LED型投影顯示器光學品質分析 63
5-1 黑色矩陣型光阻結構 63
5-2 遮光板結構參數調控 70
5-3 微透鏡陣列結構參數調控 75
5-4 微透鏡陣列基板厚度分析 78
5-5 最佳化與驗證 82
5-6 均勻度 93
第六章 結論 103
6-1 結論 103
6-2 未來展望 105
第七章 參考文獻 106
參考文獻 [1] NICHIA CORPORATION. (2023). from https://www.nichia.co.jp/jp/
[2] 楊富寶. (2022). Micro LED 自發光顯示器成本與趨勢分析: TrendForce.
[3] Short, C. (2022). Are Tiny MicroLEDs The Next Big Thing For Displays? , from https://semiengineering.com/are-tiny-microleds-the-next-big-thing-for-displays/
[4] Xiong, J., Hsiang, E. L., He, Z., Zhan, T., & Wu, S. T. (2021). Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl, 10(1), 216. doi: 10.1038/s41377-021-00658-8
[5] Display, J. B. (2023). MicroLED 0.13" Display. from https://www.jb-display.com/weixianshiping/2.html
[6] 林研詩. (2020). 從SID 2020會展觀察顯示技術發展趨勢: 工研院產科國際所.
[7] Lee, T.-Y., Chen, L.-Y., Lo, Y.-Y., Swayamprabha, S. S., Kumar, A.et al. (2022). Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advancement, and Challenges. ACS Photonics, 9(9), 2905-2930. doi: 10.1021/acsphotonics.2c00285
[8] Zhang, L., Ou, F., Chong, W. C., Chen, Y., & Li, Q. (2018). Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. 26(3), 137-145. doi: https://doi.org/10.1002/jsid.649
[9] Chong, W. C., Ou, F., Xu, Q., Chen, Y., Lau, K. M., Li, Q., & Zhang, L. (2018). 31.3: Low Optical Crosstalk Micro-LED Micro-Display with Semi-Sphere Micro-Lens for Light Collimation. 49(S1), 339-342. doi: https://doi.org/10.1002/sdtp.12720
[10] Liou, C., Shih, F., Huang, Y., Hu, Z., Tsou, C., & Fang, W. (2021). The Implementation of Sapphire Microreflector for Monolithic Micro-LED Array. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(2), 181-190. doi: 10.1109/tcpmt.2021.3049563
[11] CHEN, Y. Y., TSENG, Y. J., SUN, S. Y., LOGANATHAN, M., & CHIU, P. W. (2022). 台灣 Patent No. TW 202239035 A. 錼創顯示科技股份有限公司.
[12] CHEN, Y. Y., TSENG, Y. J., SUN, S. Y., LOGANATHAN, M., & CHIU, P. W. (2023). 台灣 Patent No. TW 202306216 A. 錼創顯示科技股份有限公司.
[13] Li, K. (2019). Understanding Waveguide: the Key Technology for Augmented Reality Near-eye Display (Part II). from https://arvrjourney.com/understanding-waveguide-the-key-technology-for-augmented-reality-near-eye-display-part-ii-fe4bf3490fa
[14] Yu, C., Peng, Y., Zhao, Q., Li, H., & Liu, X. (2017). Highly efficient waveguide display with space-variant volume holographic gratings. Applied Optics, 56(34), 9390-9397. doi: 10.1364/AO.56.009390
[15] Hamilton, B. (2023). DigiLens Announces Launch of SRG+. from https://www.digilens.com/digilens-announces-launch-of-srg/
[16] Levola, T. (2006). Diffractive optics for virtual reality displays. 14(5), 467-475. doi: https://doi.org/10.1889/1.2206112
[17] Vallius, T. (2019). US Patent No. US 10429645 B2. A. M. Technology.
[18] 蘇奕瑋(2022)。應用於波導式擴增實境裝置之擴瞳成像均勻化技術的研究。未出版之碩士論文,國立中央大學機械工程學系,桃園市。
[19] 蔡有信(2023)。表面結構波導型擴增實境裝置的二維擴瞳技術之研究。未出版之碩士論文,國立中央大學機械工程學系,桃園市。
[20] Bass, M., Stryland, E. W. V., Williams, D. R., & Wolfe (1995). Handbook of Optics Volume II Devices, Measurements, and Properties 2nd edition.
[21] Ives, H. E. (1912). XII. Studies in the photometry of lights of different colours. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24(139), 149-188. doi: 10.1080/14786440708637317
[22] Orna, M. V. (1985). Light and Color in Nature and Art, by Samuel J. Williamson and Herman Z. Cummins, John Wiley and Sons, New York, 1983, 10(2), 123-124. doi: https://doi.org/10.1002/col.5080100214
[23] Fotios, S., & Goodman, T. (2012). Proposed UK guidance for lighting in residential roads. 44(1), 69-83. doi: 10.1177/1477153511432678
[24] Smith, W. J. (2007). Modern Optical Engineering, 4th Ed: McGraw Hill LLC.
[25] Hecht, E. (2016). Optics: Pearson.
[26] Alpha, W. (2014). Paraxial approximation error plot. from https://reurl.cc/gZK2jQ
[27] Faria-e-Sousa, S. J. (2020). Sagitta of ophthalmic lenses. 40(6), 828-829. doi: https://doi.org/10.1111/opo.12732
[28] Bahl, M., Zhou, G.-R., Heller, E., Cassarly, W., Jiang, M. et al. (2015). Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods. Optical Engineering, 54(4). doi: 10.1117/1.Oe.54.4.045105
[29] Moharam, M. G., Grann, E. B., Pommet, D. A., & Gaylord, T. K. (1995). Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A, 12(5), 1068-1076. doi: 10.1364/JOSAA.12.001068
[30] Synopsys. (2020). BSDF Utilities User Guide: Synopsys.
[31] Anderson, H. L. (1986). Metropolis, Monte Carlo and the MANIAC. Los Alamos Science, 14, 96–108.
[32] Synopsys. (2023). LightTools Ray tracing User Guide: Synopsys.
[33] Inc., T. M. (2023). Curve Fitting Toolbox version: 3.7 (R2022a). from https://www.mathworks.com
[34] Mean absolute percentage error MAPE (2000). In P. M. Swamidass (Ed.), Encyclopedia of Production and Manufacturing Management (pp. 462-462). Boston, MA: Springer US.
[35] RTINGS.com. (2023). from https://www.rtings.com/
[36] Chen, H., Tan, G., & Wu, S.-T. (2017). Ambient contrast ratio of LCDs and OLED displays. Optics Express, 25(26), 33643-33656. doi: 10.1364/OE.25.033643
[37] ANSI. (2011). Projected Image System Contrast Ratio.
[38] McLamb, M., Li, Y., Park, S., Lata, M., & Hofmann, T. (2019, 6-9 Oct. 2019). Diffraction Gratings for Uniform Light Extraction from Light Guides. Paper presented at the 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT).
[39] Daniel M. Albert, D. M. G. (2023). pupil eye anatomy. from https://www.britannica.com/science/pupil-eye
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明