參考文獻 |
Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A. M., & Tan, F. J. (2021). The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 21(5), 1531-1550.
Abdulhafedh, A. (2021). Incorporating k-means, hierarchical clustering and pca in customer segmentation. Journal of City and Development, 3(1), 12-30.
Adhikary, P. P., & Dash, C. J. (2017). Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Science, 7, 339-348.
Ali, M. Z., Chu, H.-J., Chen, Y.-C., & Ullah, S. (2021). Machine learning in earthquake- and typhoon-triggered landslide susceptibility mapping and critical factor identification. Environmental Earth Sciences, 80(6), 233.
Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219-232.
Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014). A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11, 1063-1078.
Azarafza, M., Azarafza, M., Akgün, H., Atkinson, P. M., & Derakhshani, R. (2021). Deep learning-based landslide susceptibility mapping. Scientific reports, 11(1), 24112.
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., & Camerer, C. (2018). Redefine statistical significance. Nature human behaviour, 2(1), 6-10.
Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426.
Casagli, N., Intrieri, E., Tofani, V., Gigli, G., & Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51-64.
Chang, K. t., Chiang, S. H., & Lei, F. (2008). Analysing the relationship between typhoon‐triggered landslides and critical rainfall conditions. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(8), 1261-1271.
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147-160.
Chen, Y.-H. (2023). Investigating the Correlation between the Characteristics of Seismic Activity and Environmental Variables in Taiwan.
Cheng, Y.-S., Yu, T.-T., & Son, N.-T. (2021). Random Forests for Landslide Prediction in Tsengwen River Watershed, Central Taiwan. Remote Sensing, 13(2), 199.
Choy, C.-w., of Insurers, T. H. K. F., Wu, M.-c., & Lee, T.-c. (2020). Assessment of the damages and direct economic loss in Hong Kong due to Super Typhoon Mangkhut in 2018. Tropical Cyclone Research and Review, 9(4), 193-205.
Collini, E., Palesi, L. I., Nesi, P., Pantaleo, G., Nocentini, N., & Rosi, A. (2022). Predicting and understanding landslide events with explainable AI. IEEE Access, 10, 31175-31189.
Dai, F., & Lee, C. (2001). Frequency–volume relation and prediction of rainfall-induced landslides. Engineering Geology, 59(3-4), 253-266.
Dai, F., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65-87.
Dang, V.-H., Dieu, T. B., Tran, X.-L., & Hoang, N.-D. (2019). Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bulletin of Engineering Geology and the Environment, 78, 2835-2849.
De Winter, J. C., & Dodou, D. (2010). Five-point Likert items: t test versus Mann-Whitney-Wilcoxon. Practical assessment, research & evaluation, 15(11), 1-12.
Dhakal, A. S., & Sidle, R. C. (2004). Distributed simulations of landslides for different rainfall conditions. Hydrological Processes, 18(4), 757-776.
Du Toit, W. (2008). Radial basis function interpolation Stellenbosch: Stellenbosch University].
Fan, C.-C., Li, S.-C., & Lu, J.-Z. (2022). Modeling the effect of high soil moisture on the wind resistance of urban trees. Forests, 13(11), 1875.
Finlay, P. J., Fell, R., & Maguire, P. K. (1997). The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal, 34(6), 811-824.
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137-146.
Haibo, M., & Gonghui, W. (2022). Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration. 地质科技通报, 41(2), 60-70.
Hayat, M. J. (2010). Understanding statistical significance. Nursing research, 59(3), 219-223.
Helming, K. (1999). Wind speed effects on rain erosivity. Sustaining the global farm-Selected papers from the 10th International Soil Conservation Organization Meeting, held in,
Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299-310.
Iverson, R. M. (2015). Scaling and design of landslide and debris-flow experiments. Geomorphology, 244, 9-20.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
Korup, O., & Stolle, A. (2014). Landslide prediction from machine learning. Geology today, 30(1), 26-33.
Lai, J.-S., & Tsai, F. (2019). Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning. Sensors, 19(17), 3717.
Li, D., Yin, K., & Leo, C. (2010). Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environmental Earth Sciences, 60(4), 677-687.
Li, Y., Wang, Y., Ma, C., Zhang, H., Wang, Y., Song, S., & Zhu, J. (2016). Influence of the spatial layout of plant roots on slope stability. Ecological Engineering, 91, 477-486.
Lin, C.-W., Chang, W.-S., Liu, S.-H., Tsai, T.-T., Lee, S.-P., Tsang, Y.-C., Shieh, C.-L., & Tseng, C.-M. (2011). Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Engineering Geology, 123(1-2), 3-12.
Lin, Y.-C., Wang, W.-H., Lai, C.-Y., & Lin, Y.-Q. (2020). Typhoon Type Index: A New Index for Understanding the Rain or Wind Characteristics of Typhoons and Its Application to Agricultural Losses and Crop Vulnerability [The study of Typhoon characteristics on agricultural damage, landslide disasters, and the remote sensing image recognition on landslides.]. Journal of Applied Meteorology and Climatology, 59(5), 973-989.
Lin, Y.-J., Lin, J.-H., & Tan, Y.-C. (2016). Rainfall Threshold of Triggering Landslide-an Example of Typhoon Soudelor in 2015. EGU General Assembly Conference Abstracts,
Liu, J.-K., & Shih, P. T. Y. (2013). Topographic Correction of Wind-Driven Rainfall for Landslide Analysis in Central Taiwan with Validation from Aerial and Satellite Optical Images. Remote Sensing, 5(6), 2571-2589.
Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography, 17(2), 145-151.
Ma, Z., Mei, G., & Piccialli, F. (2021). Machine learning for landslides prevention: a survey. Neural Computing and Applications, 33, 10881-10907.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 50-60.
Matsuura, S., Asano, S., & Okamoto, T. (2008). Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology, 101(1-2), 49-59.
McElduff, F., Cortina-Borja, M., Chan, S.-K., & Wade, A. (2010). When t-tests or Wilcoxon-Mann-Whitney tests won′t do. Advances in physiology education, 34(3), 128-133.
McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U Test. The Corsini encyclopedia of psychology, 1-1.
Mishra, P. K., Nath, S. K., Sen, M. K., & Fasshauer, G. E. (2018). Hybrid Gaussian-cubic radial basis functions for scattered data interpolation. Computational geosciences, 22, 1203-1218.
Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998.
Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1(4), 277-288.
Nelson, O., Kassim, A., Yunusa, G. H., & Talib, Z. A. (2015). Modelling the effect of wind forces on landslide occurrence in Bududa district, Uganda.
Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble classifier. International conference on intelligent data communication technologies and internet of things (ICICI) 2018,
Ran, Q., Hong, Y., Li, W., & Gao, J. (2018). A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics. Journal of Hydrology, 563, 790-801.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-science reviews, 180, 60-91.
Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31-39.
Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6(10), 9600-9652.
Schindler, D., Bauhus, J., & Mayer, H. (2012). Wind effects on trees. In (Vol. 131, pp. 159-163): Springer.
Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 1-21.
Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random Forests. Remote sensing of environment, 115(10), 2564-2577.
Sufi, F. K. (2021). AI-Landslide: Software for acquiring hidden insights from global landslide data using Artificial Intelligence. Software Impacts, 10, 100177.
Sun, D., Wen, H., Wang, D., & Xu, J. (2020). A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology, 362, 107201.
Syakur, M., Khotimah, B., Rochman, E., & Satoto, B. D. (2018). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP conference series: materials science and engineering,
Taalab, K., Cheng, T., & Zhang, Y. (2018). Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2(2), 159-178.
Tangirala, S. (2020). Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. International Journal of Advanced Computer Science and Applications, 11(2), 612-619.
Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13, 361-378.
Tu, X., Kwong, A., Dai, F., Tham, L., & Min, H. (2009). Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides. Engineering Geology, 105(1-2), 134-150.
Usbeck, T., Wohlgemuth, T., Dobbertin, M., Pfister, C., Bürgi, A., & Rebetez, M. (2010). Increasing storm damage to forests in Switzerland from 1858 to 2007. Agricultural and Forest Meteorology, 150(1), 47-55.
Wang, F., Franco-Penya, H.-H., Kelleher, J. D., Pugh, J., & Ross, R. (2017). An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity. Machine Learning and Data Mining in Pattern Recognition: 13th International Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, Proceedings 13,
Wang, W.-H. (2020). 探討颱風特性於農損及坡地災害遙測影像辨識之研究 National Central University].
Wang, Z. C., Zhao, Q. H., & Han, J. (2013). Physical modeling of the effect of vegetation on slope stability under typhoon. Journal of Natural Disasters, 22(4), 145-152.
Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern recognition, 48(9), 2839-2846.
Wong, T.-T., & Yeh, P.-Y. (2019). Reliable accuracy estimates from k-fold cross validation. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1586-1594.
Wu, T. H. (1984). Effect of vegetation on slope stability.
Yan, Z.-x., Song, Y., Jiang, P., & Wang, H.-y. (2010). Mechanical analysis of interaction between plant roots and rock and soil mass in slope vegetation. Applied Mathematics and Mechanics, 31(5), 617-622.
Yang, R., & Xing, B. (2021). A comparison of the performance of different interpolation methods in replicating rainfall magnitudes under different climatic conditions in Chongqing Province (China). Atmosphere, 12(10), 1318.
Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J, 2(2), 226-235.
Zhuang, Y., Xing, A., Jiang, Y., Sun, Q., Yan, J., & Zhang, Y. (2022). Typhoon, rainfall and trees jointly cause landslides in coastal regions. Engineering Geology, 298, 106561.
國家災害防救科技中心. (2016). 臺灣氣候變遷災害衝擊風險評估報告.
楊樹榮, 林忠志, 鄭錦桐, 潘國樑, 蔡如君, & 李正利. (2011). 臺灣常用山崩分類系統. The 14th conference on current researhes in geotechnical engineering in Taiwan
詹繡襄. (2021). 降雨引致之坡地崩塌災害損失評估. |