博碩士論文 110621001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:18.117.158.93
姓名 陳聖允(Sheng-Yun Chen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 西北臺灣與東沙島冬季低層噴流特徵研究
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用2017/18到2021/22,共5年冬季(12~2月)的剖風儀資料,研究冬季西北臺灣和東沙島低層噴流(Low-Level Jets, LLJs)的統計特徵。LLJs通常分為兩類:(1)邊界層急流(Boundary Layer Jet, BLJ)和(2)綜觀系統低層噴流(Synoptic system–related Low-Level Jet, SLLJ)。若BLJ和SLLJ同時發生則被稱為double LLJs(DLLJs)。定義LLJ-dominated日為一天中LLJ發生超過6小時的日子。本研究亦以再分析資料對LLJ-dominated日進行綜觀環境場分析,並探討其底層風場日變化及垂直變化之機制。統計結果顯示,冬季西北臺灣與東沙島皆有較多的日子被BLJ主導。西北臺灣BLJ在高度約500公尺處出現頻率最高,伴隨較強風速(約16 m/s)。發生頻率呈現夜間和清晨高、下午較低的明顯日變化。自BLJ日的角度,大氣底層風速同具明顯日變化,可能與太陽輻射加熱造成的近地面亂流混合及夜晚近地表輻射冷卻相關。東沙島BLJ發生高度較低,發生頻率之日變化趨勢與西北臺灣相似,但變化幅度稍小,差異可能源自東沙島具較小的表面摩擦及白天地表加熱效應較小。綜觀環境場分析中,西北臺灣BLJ日有較深的西風槽和較強的風速。在850 hPa和950 hPa層有勢力較強的大陸冷高壓和阿留申低壓使東亞沿海風速增加。臺灣北部海面底層風場分析則顯示,實際風於主要貢獻項的地轉風再疊加非地轉風的共同作用下,並無顯著日變化。另外在BLJ日,垂直剖面分析發現,邊界層內,975 hPa以下(上),屬於次(超)地轉風。比較梅雨季和冬季的低層噴流特徵,發現西北臺灣冬季BLJ發生高度較低,但發生頻率的日變化趨勢相似,兩時期均在夜間至清晨有最大風速。東沙島冬季BLJ多出現在夜間與清晨且高度較低,而梅雨季BLJ則在中午最為明顯。此外,冬季與梅雨季BLJ的風速日變化幅度、亂流動能和垂直風切皆顯示出太陽輻射加熱在梅雨季比冬季更加顯著。
摘要(英) In this study, we utilized 5-year wind profiler radar data from the winters of 2017/18 to 2021/22 to investigate the characteristics of Low-level jets (LLJs) in northwestern Taiwan (NWT) and Dongsha island (DI) during winter seasons (December to February). The LLJ is typically classified into two types: (1) Boundary Layer Jets (BLJs) and (2) Synoptic system–related LLJs (SLLJs). The simultaneous occurrence of BLJ and SLLJ is termed double LLJs (DLLJs). An LLJ-dominated day (LLJ day) is defined as a day where LLJ that occurs for more than 6 hours. Reanalysis data were also used to analyze synoptic patterns on LLJ days and to investigate the mechanisms leading to the diurnal and vertical variations of the lower-level wind.
Statistical results showed that there are more BLJ-dominated days during the winter season over both NWT and DI. BLJs over NWT had the highest occurrence frequency at an altitude of ~ 500 m, accompanied by stronger wind speeds (~ 16 m/s), with a noticeable diurnal variation in occurrence frequency—higher at night and in the early morning, and lower in the afternoon. From the perspective of BLJ days, there was a clear diurnal variation in lower-level wind speeds, possibly related to the near-surface turbulent mixing induced by solar radiation heating and the nocturnal radiation cooling near-surface. BLJs over DI occurred at lower altitudes, with a diurnal variation trend similar to that over NWT, albeit with a smaller diurnal variation amplitude, possibly attributed to the smaller surface friction and less significant daytime surface heating effects over DI. In the synoptic patterns analysis, BLJ days over NWT exhibited deeper westerly trough and stronger wind speeds. The significant Siberian High and Aleutian Low at 850 hPa and 950 hPa levels contributed to increased wind speeds along the East Asian coast. Analysis of the lower-level wind field over the North Taiwan Offshore area indicated that the actual wind, influenced by the combined effects of geostrophic wind (primary) and ageostrophic wind (secondary), shows no significant diurnal variations. Additionally, on BLJ days, vertical profile analysis revealed that within the boundary layer, winds below (above) 975 hPa belonged to the subgeostrophic (supergeostrophic) wind. Comparing LLJs between the winter and the mei-yu season, it was found that winter BLJs over NWT occurred at lower heights, but their diurnal variation trends in occurrence frequency were similar, with peak wind speeds during the night and early morning. Winter BLJs over DI were more likely to occur at night and in the early morning, also at lower heights. In contrast, mei-yu season BLJs were most pronounced around noon. Furthermore, the diurnal variation amplitudes, turbulent kinetic energy, and vertical wind shear indicated that solar heating effect was more significant during the mei-yu season than in winter.
關鍵字(中) ★ 剖風儀
★ 低層噴流
關鍵字(英) ★ wind profiler
★ low-level jet
論文目次 中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 4
第二章、 資料來源與研究方法 6
2.1 資料來源 6
2.1.1 449 MHz剖風儀 6
2.1.2 再分析資料 6
2.1.3 颱風最佳路徑資料 7
2.2 資料處理 7
2.2.1 研究之時間範圍 7
2.2.2 移除熱帶氣旋之影響 7
2.2.3 合併剖風儀垂直剖面資料 8
2.2.4 移除高缺失率垂直剖面資料 8
2.3 研究方法 9
2.3.1 定義LLJ事件 9
2.3.2 定義LLJ-dominated日與non-LLJ-dominated日 10
2.3.3 LLJ日 11
2.3.4 定義LLJ發生頻率 11
2.3.5 定義LLJ風向頻率 11
2.3.6 亂流動能(Turbulent Kinetic Energy,TKE) 12
2.3.7 垂直風切 12
2.3.8 地轉風與非地轉風 13
第三章、 冬季BLJ日的BLJ統計特徵 14
3.1 西北臺灣BLJ 14
3.1.1 垂直結構特徵 14
3.1.2 日變化特徵 14
3.2 東沙島BLJ 16
3.2.1 垂直結構特徵 16
3.2.2 日變化特徵 17
第四章、 BLJ日底層風場分析 19
4.1 綜觀環境場分析 19
4.2 地轉風與非地轉風之分析 21
4.2.1 臺灣海峽北部風場與臺灣北部海面風場的比較 21
4.2.2 水平風場分析 22
4.2.3 風場垂直剖面分析 23
4.2.4 Ekman螺旋 23
4.2.5 日變化特徵 24
第五章、 討論 26
5.1 梅雨季西北臺灣LLJ統計特徵 26
5.2 梅雨季東沙島LLJ統計特徵 27
第六章、 結論與未來展望 29
6.1 結論 29
6.2 未來展望 31
參考文獻 32
附表 34
附圖 38
參考文獻 劉宴伶,2021:「使用剖風儀分析梅雨季期間台灣北部及東沙島上空的低層噴流特徵」,國立中央大學碩士論文,79 頁。
Baas, P., F. Bosveld, and H. K. Baltink, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. and Climat., 48, 1627–1642.
Blackadar, A. K., 1957: Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions. Bull. Amer. Meteor. Soc., 38, 283–290.
Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833–850.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, G. T. J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884–891.
Chen, G. T.-J., C.-C. Wang, and D. T.-W. Lin, 2005: Characteristics of low-level jets over northern Taiwan in Mei-Yu Season and their relationship to heavy rain events. Mon. Wea. Rev., 133, 20–43.
Chen, T-C., M-C. Yen, and S. Schubert, 2001: Diurnal variation of pressure-heights: A vertical phase shift. J. Climate, 14, 3793–3797.
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang: 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257–2284.
Chen, Y-L., X. A. Chen, S. Chen, and Y-H. Kuo, 1997: A numerical study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 125, 2583–2604.
Chen, Y. L., Y.-J. Chu, C.-S. Chen, C.-C. Tu, J. Teng, and P.-L. Lin, 2018: Analysis and simulations of a heavy rainfall event over northern Taiwan during 11–12 June 2012. Mon. Wea. Rev., 146, 2697–2715.
Chien, F.-C.; Hong, J.-S.; Kuo, Y.-H., 2019: The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models. Sensors, 19, 155.
Du, Y., Q. Zhang, Y. Ying, and Y. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891–903.
Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674–3683.
Du, Y., and G. X. Chen, 2019: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32, 8813–8833.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049.
Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19A, 199–205.
Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp.
Jhun, J. G., and E. J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711–726.
Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J. and Neumann, C.J., 2010: The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bulletin of the American Meteorological Society, 91, 363–376.
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971.
Lin, P.-L., Chen, Y.-L., Chen, C.-S., Liu, C.-L., and Chen, C.-Y., 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteorology and Atmospheric Physics, 114(1), 35.
Lothon, M., F. Said, F. Lohou, and B. Campistron, 2008: Observation of the diurnal cycle in the low troposphere of West Africa. Mon. Wea. Rev., 136(9), 3477–3500.
Mahrt, L., 1981: The early evening boundary layer transition. Quart. J. Roy. Meteor. Soc., 107, 329−343.
Mellor, G. L., 1996: Introduction to Physical Oceanography. American Institute of Physics, 284 pp.
Pham, N., Nakamura, K., A. Furuzawa, F., and Satoh, S., 2008: Characteristics of Low Level Jets over Okinawa in the Baiu and post-Baiu Seasons Revealed by Wind Profiler Observations. Journal of the Meteorological Society of Japan. Ser. II, 86(5), 699-717.
Riehl, H., 1962: Jet streams of the atmosphere. Tech. Rep. 32, Dept. Atmospheric Science, Colorado State University, 177 pp.
Saucier, W. J., 1955: Principles of Meteorological Analysis. The University of Chicago Press, 438 pp.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology, Kluwer Academic, Dordrecht, the Netherlands, 666 pp.
Stull, R., B. 2017: Practical Meteorology: an Algebra-Based Survey of Atmospheric Science. University of British Columbia, 924 pp.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the marine boundary layer jet over the South China Sea during the early summer rainy season of Taiwan. Mon. Wea. Rev., 147, 457-475.
Tu, C.-C.; Chen, Y.-L.; Lin, P.-L.; Huang, M.-Q., 2022: Analysis and Simulations of a heavy rainfall event associated with the passage of a shallow front over Northern Taiwan on 2 June 2017. Mon. Wea. Rev., 150, 505–528.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555–2574.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2024-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明