博碩士論文 110621601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.216.251.190
姓名 范春昀(Pham Xuan Quan)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Prediction of Tropical Cyclogenesis with GNSS RO Data Assimilation through the WRF Hybrid 3DEnVar)
相關論文
★ MPAS-GSI Hybrid同化GPS掩星資料對2016年尼伯特颱風預報的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究探討同化 (DA)全球導航衛星系統 (GNSS) 無線電掩星 (RO) 資料,對2020年至2022年於西北太平洋的十個熱帶氣旋個案之模擬生成的影響。使用 WRFDA 系統中的混成 3DEnVar 方法,進行了四個 DA 實驗:1. 僅同化傳統觀測資料 (GTS),和2. 進一步加入 GNSS RO 觀測,並以非局地折射算符進行同化 (EPH), 或是3. GTS加入衛星輻射資料進行同化 (RAD),以及4.同化所有觀測資料 (ALL)。由統計分析顯示,同化 GNSS RO 和衛星輻射資料時,在模擬熱帶氣旋生成的時間和位置方面,呈現顯著改善。實驗ALL在模擬熱帶氣旋生成方面表現出色,平均空間誤差顯著減少。然而,實驗EPH結合了傳統觀測和 GNSS RO 數據,在24小時預報誤差範圍內,成功模擬氣旋生成優於其他實驗,強調了 GNSS RO 資料對準確預測氣旋生成的重要性。經由與歐洲中期天氣預報中心的第五代再分析資料 (ERA5) 驗證,證實同化 GNSS掩星 和衛星輻射資料,顯著改善了綜觀環境場。使用衛星資料的實驗 (EPH、RAD 和 ALL) ,校驗結果顯示,對於水汽混成比和溫度的平均誤差 (ME) 和均方根誤差 (RMSE)的表現,優於僅使用傳統資料的同化模擬實驗 (GTS)。在水汽混成比方面,同化RO 資料的實驗在850 hPa高度以上表現最佳,其中實驗 ALL在550 hPa及更高層高度上提供了最佳結果。溫度方面,實驗RAD在500 hPa高度以上,呈現明顯的改善。GNSS RO數據的引入顯著增強了折射率模擬,特別是在中至上層對流層(1-10 km),減少了偏差和RMSE值。

對於特定颱風的個案研究,如2021年的璨樹颱風 (Typhoon Chanthu) 和2020年的哈格比颱風 (Typhoon Hagupit),由模擬結果進一步說明了 同化GNSS RO 和衛星輻射,有效提升初始模式水汽場和溫度場的準確性,進而改善氣旋生成預測的有效性。此外,同化 GNSS RO 資料可有助於改善中低層對流層中的水汽含量分佈,模式水氣增加,促使有組織的對流形成、強烈垂直運動,以及中層相對渦度的發展,這些條件有利於熱帶氣旋的生成。藉由位渦度趨勢收支分析,強調了非絕熱加熱對渦旋發展和維持的影響,並指出潛熱釋放是其中的關鍵因素。
摘要(英) This study investigates the impact of global navigation satellite system (GNSS) radio occultation (RO) data assimilation (DA) on the cyclogenesis of ten tropical cyclones in the northwestern Pacific region from 2020 to 2022. Employing a hybrid 3DEnVar in the WRFDA system, four DA experiments are conducted: assimilating conventional data only (GTS), further incorporating only with GNSS RO data (EPH) or with radiance data (RAD), and assimilating all the above observations (ALL). Statistical analyses reveal significant improvements on time and location predictions of tropical cyclogenesis, particularly when both GNSS RO and radiance data are assimilated. ALL demonstrates superior predictive capabilities in capturing tropical cyclogenesis, with an averaged spatial error reduction. However, EPH outperforms others in simulating vortex formation within a 24-h prediction error range, highlighting the positive impact of GNSS RO data on improving cyclogenesis forecasting.

The verification over a larger region shows that incorporating RO and radiance data significantly improves synoptic environment modeling and particularly cyclogenesis forecasts. The global ERA5 reanalysis confirms that the experiments using satellite data (EPH, RAD, and ALL) outperform the conventional data experiment (GTS), especially in reducing mean errors and root mean square errors for water vapor mixing ratio and temperature. EPH excels above 850 hPa for water vapor mixing ratio, but ALL provides the best results from 550 hPa and higher. For temperature, RAD shows the most significant improvements above 500 hPa. Case studies on two specific typhoons, Chanthu (2021) and Hagupit (2020), further underscore the efficacy of GNSS RO and radiance DA in improvement of moisture and temperature predictions, crucial for cyclogenesis forecasts. Besides, assimilating GNSS RO data leads to an increase in the lower-mid-tropospheric moisture, organized convection, strong vertical motions at the grid scale, and the development of midlevel vorticity, and all these conditions are favorable for tropical cyclogenesis. Through the analysis of potential vorticity tendency budget, the significance of diabatic heating in influencing the development and maintenance of vortices is highlighted with latent heat release identified as a crucial factor.
關鍵字(中) ★ 氣旋生成
★ GNSS RO
★ 輻射資料進行
★ 數據同化
★ 混成 3DEnVar
關鍵字(英) ★ Tropical cyclogenesis
★ GNSS RO
★ Radiance data
★ Data assimilation
★ Hybrid 3DEnVar
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. NUMERICAL MODEL AND DATA ASSIMILATION 7
2.1. WRF model configurations and hybrid WRFDA 7
2.2. Observations 8
2.2.1. GNSS RO data and the forward operators 8
2.2.2. Radiance data assimilation and bias correction 9
CHAPTER 3. EXPERIMENTAL DESIGNS AND OVERALL RESULTS 12
3.1. Cyclogenesis detection 13
3.2. Area-averaged synoptic verification 15
3.2.1. Verification against the ERA5 reanalysis 15
3.2.2. Verification against the RO sounding 17
CHAPTER 4. TWO TYPHOON CASES 19
4.1. Typhoon Chanthu (2021) 20
4.2. Typhoon Hagupit (2020) 22
CHAPTER 5. FURTHER ANALYSIS FOR CASE STUDIES 25
5.1. Thermodynamic diagnosis and PV tendency budget examination for TY Chanthu (2021) 26
5.2. Discussion on TY Hagupit (2020) with radiance impacts 30
CHAPTER 6. ENSEMBLE FORECASTS 33
CHAPTER 7. CONCLUSIONS 36
REFERENCES 39
TABLES CONTAINED 50
FIGURES CONTAINED 53
APPENDIX A 66
APPENDIX B 73
參考文獻 Anthes, R.A., 2011. Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6), pp.1077-1103.
Auligné, T., McNally, A.P. and Dee, D.P., 2007. Adaptive bias correction for satellite data in a numerical weather prediction system. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(624), pp.631-642.
Barker, D., Huang, X.Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y. and Demirtas, M., 2012. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society, 93(6), pp.831-843.
Bauer, P., Geer, A.J., Lopez, P. and Salmond, D., 2010. Direct 4D‐Var assimilation of all‐sky radiances. Part I: Implementation. Quarterly Journal of the Royal Meteorological Society, 136(652), pp.1868-1885.
Bell, W., English, S.J., Candy, B., Atkinson, N., Hilton, F., Baker, N., Swadley, S.D., Campbell, W.F., Bormann, N., Kelly, G. and Kazumori, M., 2008. The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Transactions on Geoscience and Remote Sensing, 46(4), pp.884-900.
Buehner, M., Caya, A., Carrieres, T. and Pogson, L., 2016. Assimilation of SSMIS and ASCAT data and the replacement of highly uncertain estimates in the Environment Canada Regional Ice Prediction System. Quarterly Journal of the Royal Meteorological Society, 142(695), pp.562-573.
Chen, K., Chen, Z., Xian, Z. and Li, G., 2023. Impacts of the all-sky assimilation of FY-3C and FY-3D MWHS-2 radiances on analyses and forecasts of typhoon Hagupit. Remote Sensing, 15(9), p.2279.
Chen, S.H., Vandenberghe, F., Petty, G.W. and Bresch, J.F., 2004. Application of SSM/I satellite data to a hurricane simulation. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(598), pp.801-825.
Chen, S.Y., Huang, C.Y., Kuo, Y.H., Guo, Y.R. and Sokolovskiy, S., 2009. Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVar and its impact on the prediction of a typhoon event. Terrestrial, Atmospheric & Oceanic Sciences, 20(1).
Chen, S.Y., Kuo, Y.H. and Huang, C.Y., 2020. The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. Monthly Weather Review, 148(7), pp.2701-2717.
Chen, S.Y., Liu, C.Y., Huang, C.Y., Hsu, S.C., Li, H.W., Lin, P.H., Cheng, J.P. and Huang, C.Y., 2021. An analysis study of FORMOSAT-7/COSMIC-2 radio occultation data in the troposphere. Remote Sensing, 13(4), p.717.
Chen, S.Y., Nguyen, T.C. and Huang, C.Y., 2021. Impact of radio occultation data on the prediction of Typhoon Haishen (2020) with WRFDA hybrid assimilation. Atmosphere, 12(11), p.1397.
Chen, S.Y., Wee, T.K., Kuo, Y.H. and Bromwich, D.H., 2014. An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Monthly Weather Review, 142(11), pp.4187-4206.
Collard, A.D. and Healy, S.B., 2003. The combined impact of future space‐based atmospheric sounding instruments on numerical weather‐prediction analysis fields: A simulation study. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 129(593), pp.2741-2760.
Cucurull, L., Anthes, R.A. and Tsao, L.L., 2014. Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. Journal of Atmospheric and Oceanic Technology, 31(1), pp.20-32.
Cucurull, L., Kuo, Y.H., Barker, D. and Rizvi, S.R.H., 2006. Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Monthly weather review, 134(11), pp.3283-3296.
Davis, C. and Bosart, L.F., 2002. Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Monthly weather review, 130(5), pp.1100-1124.
Derber, J.C. and Wu, W.S., 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Monthly Weather Review, 126(8), pp.2287-2299.
Eguchi, N., Kobayashi, K., Ito, K. and Nasuno, T., 2021, April. The impact of upper tropospheric temperature change on tropical cyclone. In EGU General Assembly Conference Abstracts (pp. EGU21-13735).
Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), pp.585-605.
Gorbunov, M.E., Lauritsen, K.B., Rodin, A., Tomassini, M. and Kornblueh, L., 2005. Analysis of the CHAMP experimental data on radio-occultation sounding of the Earth’s atmosphere. Izvestiya Atmospheric and Oceanic Physics, 41, pp.726-740.
Gray, W., 1988. Environmental influences on tropical cyclones. Australian Meteorological Magazine, 36, pp.127-139.
Gray, W.M., 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), pp.669-700.
Halperin, D.J., Fuelberg, H.E., Hart, R.E. and Cossuth, J.H., 2016. Verification of tropical cyclone genesis forecasts from global numerical models: Comparisons between the North Atlantic and eastern North Pacific basins. Weather and Forecasting, 31(3), pp.947-955.
Halperin, D.J., Fuelberg, H.E., Hart, R.E., Cossuth, J.H., Sura, P. and Pasch, R.J., 2013. An evaluation of tropical cyclone genesis forecasts from global numerical models. Weather and Forecasting, 28(6), pp.1423-1445.
Hamill, T.M., Whitaker, J.S., Kleist, D.T., Fiorino, M. and Benjamin, S.G., 2011. Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Monthly Weather Review, 139(10), pp.3243-3247.
Healy, S., 2020. ECMWF starts assimilating COSMIC-2 data. Ecmwf Newsl, 163, pp.5-6.
Healy, S.B., 2008, June. Assimilation of GPS radio occultation measurements at ECMWF. In Proceedings of the GRAS SAF Workshop on Applications of GPSRO measurements, ECMWF, Reading, UK, pp. 16-18.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A. and Muñoz‐Sabater, J., 2020. The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146(730), pp.1999-2049.
Ho, S.P., Anthes, R.A., Ao, C.O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A.J., Pedatella, N., Randel, W.J., Simmons, A. and Steiner, A., 2020. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bulletin of the American Meteorological Society, 101(7), pp.E1107-E1136.
Ho, S.P., Zhou, X., Shao, X., Zhang, B., Adhikari, L., Kireev, S., He, Y., Yoe, J.G., Xia-Serafino, W. and Lynch, E., 2020. Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data. Remote Sensing, 12(24), p.4099.
Honda, T., Miyoshi, T., Lien, G.Y., Nishizawa, S., Yoshida, R., Adachi, S.A., Terasaki, K., Okamoto, K., Tomita, H. and Bessho, K., 2018. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Monthly Weather Review, 146(1), pp.213-229.
Huang, C.Y., Kuo, Y.H., Chen, S.H. and Vandenberghe, F., 2005. Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Weather and Forecasting, 20(6), pp.931-953.
Huang, C.Y., Kuo, Y.H., Chen, S.Y., Terng, C.T., Chien, F.C., Lin, P.L., Kueh, M.T., Chen, S.H., Yang, M.J., Wang, C.J. and Prasad Rao, A.S., 2010. Impact of GPS radio occultation data assimilation on regional weather predictions. GPS solutions, 14, pp.35-49.
Huang, C.Y., Wu, I.H. and Feng, L., 2016. A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. Journal of Geophysical Research: Atmospheres, 121(21), pp.12-647.
Kazumori, M., 2014. Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system. Monthly Weather Review, 142(3), pp.1361-1381.
Kerns, B., Greene, K. and Zipser, E., 2008. Four years of tropical ERA-40 vorticity maxima tracks. Part I: Climatology and vertical vorticity structure. Monthly Weather Review, 136(11), pp.4301-4319.
Kieu, C.Q. and Zhang, D.L., 2010. Genesis of Tropical Storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part III: Sensitivity to various genesis parameters. Journal of the atmospheric sciences, 67(6), pp.1745-1758.
Kim, D.H. and Kim, H.M., 2018. Effect of assimilating Himawari-8 atmospheric motion vectors on forecast errors over East Asia. Journal of Atmospheric and Oceanic Technology, 35(9), pp.1737-1752.
Kleist, D.T., 2012. An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. University of Maryland, College Park.
Kong, R., Xue, M., Liu, C. and Jung, Y., 2020. Comparisons of hybrid En3DVar with 3DVar and EnKF for radar data assimilation: Tests with the 10 May 2010 Oklahoma tornado outbreak. Monthly Weather Review, 149(1), pp.21-40.
Kuo, Y.H., Liu, H., Guo, Y.R., Terng, C.T. and Lin, Y.T., 2008. Impact of FORMOSAT-3/COSMIC data on typhoon and Mei-yu prediction. In Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific Region (pp. 458-483).
Kuo, Y.H., Schreiner, W.S., Wang, J., Rossiter, D.L. and Zhang, Y., 2005. Comparison of GPS radio occultation soundings with radiosondes. Geophysical Research Letters, 32(5).
Kuo, Y.H., Wee, T.K., Sokolovskiy, S., Rocken, C., Schreiner, W., Hunt, D. and Anthes, R.A., 2004. Inversion and error estimation of GPS radio occultation data. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), pp.507-531.
Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P. and Hardy, K.R., 1997. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 102(D19), pp.23429-23465.
Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P. and Hardy, K.R., 1997. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 102(D19), pp.23429-23465.
Kutty, G. and Gohil, K., 2017. The role of mid-level vortex in the intensification and weakening of tropical cyclones. Journal of Earth System Science, 126, pp.1-12.
Lee, J.W., Min, K.H. and Lim, K.S.S., 2022. Comparing 3DVar and hybrid radar data assimilation methods for heavy rain forecast. Atmospheric Research, 270, p.106062.
Li, Z. and Pu, Z., 2014. Numerical simulations of the genesis of Typhoon Nuri (2008): Sensitivity to initial conditions and implications for the roles of intense convection and moisture conditions. Weather and Forecasting, 29(6), pp.1402-1424.
Lien, G.Y., Lin, C.H., Huang, Z.M., Teng, W.H., Chen, J.H., Lin, C.C., Ho, H.H., Huang, J.Y., Hong, J.S., Cheng, C.P. and Huang, C.Y., 2021. Assimilation impact of early FORMOSAT-7/COSMIC-2 GNSS radio occultation data with Taiwan’s CWB Global Forecast System. Monthly Weather Review, 149(7), pp.2171-2191.
Lin, H., Weygandt, S.S., Benjamin, S.G. and Hu, M., 2017. Satellite radiance data assimilation within the hourly updated Rapid Refresh. Weather and Forecasting, 32(4), pp.1273-1287.
Liu, Z., Schwartz, C.S., Snyder, C. and Ha, S.Y., 2012. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Monthly Weather Review, 140(12), pp.4017-4034.
Loi, C.L., Wu, C.C. and Liang, Y.C., 2024. Prediction of tropical cyclogenesis based on machine learning methods and its SHAP interpretation. Journal of Advances in Modeling Earth Systems, 16(3), p.e2023MS003637.
Ma, J., Hu, L., She, H., Fan, B. and Da, C., 2024. Decomposition of Lorenz Trajectories Based on Space Curve Tangent Vector. Atmosphere, 15(3), p.319.
Ma, Z., Maddy, E.S., Zhang, B., Zhu, T. and Boukabara, S.A., 2017. Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. Journal of Atmospheric and Oceanic Technology, 34(4), pp.797-815.
McNally, A.P., Watts, P.D., A. Smith, J., Engelen, R., Kelly, G.A., Thépaut, J.N. and Matricardi, M., 2006. The assimilation of AIRS radiance data at ECMWF. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(616), pp.935-957.
Moussa, A.M., Diop, B., Diakhaby, A., Deme, A. and Sy, A., 2014. Precipitable water vapor, temperature and humidity retrieval using AMSU-A, MHS and HIRS. International Journal of Innovation and Applied Studies, 9(4), p.1793.
National Center for Atmospheric Research, Mesoscale & Microscale Meteorology Laboratory. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 14 September 2021).
Nolan, D.S., 2007. What is the trigger for tropical cyclogenesis. Australian Meteorological Magazine, 56(4), pp.241-266.
Ooyama, K., 1969. Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), pp.3-40.
Poli, P., Healy, S.B. and Dee, D.P., 2010. Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 136(653), pp.1972-1990.
Pu, Z. and Zhang, L., 2010. Validation of AIRS temperature and moisture profiles over tropical oceans and their impact on numerical simulations of tropical cyclones. J. Geophys. Res, 115, p.D24114.
Ritchie, E.A. and Holland, G.J., 1997. Scale interactions during the formation of Typhoon Irving. Monthly weather review, 125(7), pp.1377-1396.
Routray, A., Mohanty, U.C., Osuri, K.K., Kar, S.C. and Niyogi, D., 2016. Impact of satellite radiance data on simulations of Bay of Bengal tropical cyclones using the WRF-3DVar modeling system. IEEE Transactions on Geoscience and Remote Sensing, 54(4), pp.2285-2303.
Schreiner, W.S., Weiss, J.P., Anthes, R.A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y.H., Meehan, T., Serafino, W. and Sjoberg, J., 2020. COSMIC‐2 radio occultation constellation: First results. Geophysical Research Letters, 47(4), p.e2019GL086841.
Shao, H., Bathmann, K., Zhang, H., Huang, Z.M., Cucurull, L., Vandenberghe, F., Treadon, R., Kleist, D. and Yoe, J.G., 2020, May. COSMIC-2 NWP assessment and implementation at JCSDA and NCEP. In Proceedings of the 5th International Conference on GPS Radio and Occultation, Taipei, Taiwan (pp. 27-29).
Simmons, A.J. and Hollingsworth, A., 2002. Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128(580), pp.647-677.
Sippel, J.A. and Zhang, F., 2008. A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. Journal of the Atmospheric Sciences, 65(11), pp.3440-3459.
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G., 2008. A description of the advanced research WRF version 3. NCAR technical note, 475, p.113.
Sokolovskiy, S., Kuo, Y.H. and Wang, W., 2005a. Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Monthly weather review, 133(8), pp.2200-2212.
Sokolovskiy, S., Kuo, Y.H. and Wang, W., 2005b. Evaluation of a linear phase observation operator with CHAMP radio occultation data and high-resolution regional analysis. Monthly weather review, 133(10), pp.3053-3059.
Tao, D. and Zhang, F., 2014. Effect of environmental shear, sea‐surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble‐mean perspective. Journal of Advances in Modeling Earth Systems, 6(2), pp.384-404.
Teng, H.F., Kuo, Y.H. and Done, J.M., 2021. Importance of midlevel moisture for tropical cyclone formation in easterly and monsoon environments over the western North Pacific. Monthly Weather Review, 149(7), pp.2449-2469.
Teng, H.F., Kuo, Y.H. and Done, J.M., 2022. Potential impacts of radio occultation data assimilation on forecast skill of tropical cyclone formation in the western North Pacific. Geophysical Research Letters, 50(5), p.e2021GL096750.
Thatcher, L. and Pu, Z., 2013. Evaluation of Tropical Cyclone Genesis Precursors with Relative Operating Characteristics (ROC) in Highresolution Ensemble Forecasts: Hurricane Ernesto. Tropical cyclone research and review, 2(3), pp.131-148.
Thodsan, T., Wu, F., Torsri, K., Cuestas, E.M.A. and Yang, G., 2022. Satellite radiance data assimilation using the WRF-3DVar system for tropical storm Dianmu (2021) forecasts. Atmosphere, 13(6), p.956.
Wang, J., Zhang, L., Guan, J. and Zhang, M., 2020. Comparison of assimilating all-sky and clear-sky satellite radiance for Typhoon Chan-Hom and Nangka forecasts. Atmosphere, 11(6), p.599.
Wang, X., Barker, D.M., Snyder, C. and Hamill, T.M., 2008a. A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Monthly Weather Review, 136(12), pp.5116-5131.
Wang, X., Barker, D.M., Snyder, C. and Hamill, T.M., 2008b. A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part II: Real observation experiments. Monthly Weather Review, 136(12), pp.5132-5147.
Xu, D., Shu, A., Shen, F., Min, J., Li, H. and Xia, X., 2020. Impacts of multiple radiance data assimilation on the simulation of typhoon chan-hom. Atmosphere, 11(9), p.957.
Yang, C., Liu, Z., Bresch, J., Rizvi, S.R., Huang, X.Y. and Min, J., 2016. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 68(1), p.30917.
Yang, S.C., Chen, S.H. and Chang, C.C., 2023. Understanding the impact of assimilating FORMOSAT‐7/COSMIC‐2 radio occultation refractivity on tropical cyclone genesis: Observing system simulation experiments using Hurricane Gordon (2006) as a case study. Quarterly Journal of the Royal Meteorological Society, 149(753), pp.1293-1318.
Yoshida, R., Miyamoto, Y., Tomita, H. and Kajikawa, Y., 2017. The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU2010. Journal of the Meteorological Society of Japan. Ser. II, 95(1), pp.35-47.
Zhang, M., Zupanski, M., Kim, M.J. and Knaff, J.A., 2013. Assimilating AMSU-A radiances in the TC core area with NOAA operational HWRF (2011) and a hybrid data assimilation system: Danielle (2010). Monthly weather review, 141(11), pp.3889-3907.
Zhou, T., Ding, L., Ji, J., Li, L. and Huang, W., 2019. Ensemble transform Kalman filter (ETKF) for large-scale wildland fire spread simulation using FARSITE tool and state estimation method. Fire safety journal, 105, pp.95-106.
Zhu, K., Xue, M., Pan, Y., Hu, M., Benjamin, S.G., Weygandt, S.S. and Lin, H., 2019. The impact of satellite radiance data assimilation within a frequently updated regional forecast system using a GSI-based ensemble Kalman filter. Advances in Atmospheric Sciences, 36, pp.1308-1326.
Zou, X., Qin, Z. and Weng, F., 2013. Improved quantitative precipitation forecasts by MHS radiance data assimilation with a newly added cloud detection algorithm. Monthly weather review, 141(9), pp.3203-3221.
指導教授 黃清勇 陳舒雅(Ching-Yuang Huang Shu-Ya Chen) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明