參考文獻 |
Ahasan, M. N., Chowdhury, M. A. M., Quadir, D. A. (2014). Sensitivity test of parameterization schemes of MM5 model for prediction of the high impact rainfall events over Bangladesh. J. Mech. Eng., 44(1), 33-42.
Allabakash, S., and Lim, S. (2020). Climatology of planetary boundary layer height-controlling meteorological parameters over the Korean Peninsula. Remote Sensing, 12(16), 2571.
Allaerts, D., and Meyers, J. (2015). Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer. Phys. Fluids, 27(6).
Baars, H., et al. (2016). An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos. Chem. Phys., 16, 5111-5137.
Berkoff, T. A., Welton, E. J., Campbell, J. R., Scott, V. S., Spinhirne, J.D. (2003). Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET), in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Presented at the IGARSS 2003. IEEE, Toulouse, France, 4395-4397.
Bianco, L., Wilczak, J. M., White, A. B. (2008). Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations. J. Atmos. Ocean. Technol., 25(8), 1397-1413.
Boers, R., Eloranta, E.W., Coulter, R.L. (1984). Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247-266.
Bravo-Aranda, J.A., et al. (2017). A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results. Atmos. Chem. Phys., 17, 6839-6851.
Brooks, I. M., Fowler, A. M. (2012). An evaluation of boundary-layer depth, inversion and entrainment parameters by large-eddy simulation. Bound.-Layer Meteor. 142, 245-263.
Brooks, I.M. (2003). Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 1092-1105.
Browell, E., S. Ismail, and W. Grant (1998). Differential Absorption Lidar (DIAL) measurements from air and space. App. Phys.-B, 67, 399-410.
Businger, J. A., Wyngaard, J. C., Izumi, Y., Bradley, E. F. (1971). Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28(2), 181-189.
Campbell, J. R., Welton, E. J., Krotkov, N. A., Yang, K., Stewart, S. A., Fromm, M. D. (2012). Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold. Atmos. Environ., 46, 441-448.
Campbell, J. R., Hlavka, D.L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott III, V. S., Hwang, I. (2002). Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431-442.
Canny, J. (1986). A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8(6), 679-698.
Carroll, B. J.et al. (2022). Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results. Atmos. Meas. Tech., 15(3), 605-626.
Chen, W.-N., Chiang, C.-W., Nee, J.-B. (2002). Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 6470-6476.
Chen, Y. C., Hsu, C. Y., Lin, S. L., Chang-Chien, G. P., Chen, M. J., Fang, G. C., Chiang, H. C. (2015). Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol Air Qual. Res., 15. 2571-2583.
Chen, Y. C., et al. (2021). Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment. Atmos. Chem. Phys., 21(6), 4487-4502.
Cheng, F. Y., and Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Sci. Rep., 9(1), 1-12.
Chiang, C. W., Das, S. K., Lin, C. Y., Nee, J. B., Sun, S. H., Chiang, H. W., Shu-Ting, Z. (2012). Multi-year investigations of aerosol layer using lidar measurements at Chung-Li, Taiwan. J. Atmos. Solar-Terr. Phys., 89, 40-47.
Chiang, C. W., et al. (2015). A new mobile and portable scanning lidar for profiling the lower troposphere. Geoscientific Instrumentation. Methods Data Syst., 4(1), 35-44.
Chou, C. C. K., Lee, C. T., Chen, W. N., Chang, S. Y., Chen, T. K., Lin, C. Y., Chen, J. P. (2007). Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan. Sci. Total Environ., 374(1), 156-166.
Chuang, M. T., et al. (2014). Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmos. Environ., 89, 507-516.
Chuang, M. T., et al. (2017). A simulation study on PM2.5 sources and meteorological characteristics at the northern tip of Taiwan in the early stage of the Asian haze period. Aerosol Air Qual. Res., 17(12), 3166-3178.
Chuang, M. T., Chen, Y. C., Lee, C. T., Cheng, C. H., Tsai, Y. J., Chang, S. Y., Su, Z. S. (2016). Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environ. Pollut., 214, 273-281.
Colarco P. R. et al. (2003). Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J. Geophys. Res.: Atmos., 108(19), 8590.
Davis, K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan (2000). An objective method for deriving atmospheric structure from airborne lidar observations, J. Atmos. Oceanic Technol., 17, 1455-1468.
De Franceschi, M., Rampanelli, G., Sguerso, D., Zardi, D., Zatelli, P. (2003). Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer. Ann. Geophys.
De Tomasi, F., Miglietta, M.M., Perrone, M.R. (2011). The growth of the planetary boundary layer at a coastal site: A case study. Bound.-Layer Meteor., 139, 521–541.
De Wekker, S. F., and Kossmann, M. (2015). Convective boundary layer heights over mountainous terrain—a review of concepts. Front. Earth Sci., 3, 77.
Deardorff, J. W., Willis, G. E., Stockton, B. H. (1980). Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer. J. Fluid Mech., 100, 41-64.
Deng, G., and Cahill, L. W. (1993). An adaptive Gaussian filter for noise reduction and edge detection. In 1993 IEEE conference record nuclear science symposium and medical imaging conference. IEEE, 1615-1619
Draxler, R. R., Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteor. Mag., 47(4), 295-308.
Driedonks, A. G. M., and Tennekes, H. (1984). Entrainment effects in the well-mixed atmospheric boundary layer. Bound.-Layer Meteor., 30(1-4), 75-105.
Durre, I., Vose, R. S., Wuertz, D. B. (2006). Overview of the integrated global radiosonde archive. J. Clim., 19(1), 53-68.
Emeis, S. (2010). Surface-based remote sensing of the atmospheric boundary layer. Springer Science & Business Media., 40.
Ester, M., Kriegel, H.P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, 226–231.
Finnigan, J. J. (2007). The turbulent wind in plant and forest canopies. Academic Press, Burlington, USA. 15-58.
Flamant, C., Pelon J., Flamant P. H., Durand P. (1997). Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound-Layer Meteor., 83, 247-284.
Flynn, C. J., Mendozaa, A., Zhengb, Y., Mathurb, S. (2007). Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express, OE 15, 2785-2790.
Fromm, M., Kablick III, G., Nedoluha, G., Carboni, E., Grainger, R., Campbell, J., Lewis, J. (2014). Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak. J. Geophys. Res.: Atmos., 119(17), 10-343.
Gamage, N., and Hagelberg C. (1993). Detection and analysis of microfronts and associated coherent events using localized transforms. J. Atmos. Sci., 50, 750-756.
Garratt, J. R. (1994). The atmospheric boundary layer. Earth-Sci. Rev., 37(1-2), 89-134.
Gaudio, P., et al. (2015). Detection and monitoring of pollutant sources with Lidar/Dial techniques. J. Phys.: Conf. Ser., 658, 012004.
Gifford, F.A. (1962). Uses of routine meteorological observations for estimating atmospheric dispersion. Nuclear Safety, 2(4), 47-51.
Haarig, M., et al. (2017). Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE. Atmos. Chem. Phys., 17(23), 14199-14217.
Hair, J. W., et al. (2008). Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties, Appl. Opt., 47.
He, Y., et al. (2021). Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Clim., 38, 100884.
Hegarty, J. D., et al. (2018). Analysis of the planetary boundary layer height during DISCOVER-AQ Baltimore–Washington, DC, with lidar and high-resolution WRF modeling. J. Appl. Meteorol. Clim., 57(11), 2679-2696.
Hennemuth, B., and Lammert, A. (2006). Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound-Layer Meteor., 120, 181-200.
Holben, B. N., et al. (1998). AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16.
Holzworth, G. C. (1964). Estimates of mean maximum mixing depths in the contiguous United States. Monthly Weather Review, 92(5), 235-242.
Hsu, C. H., and Cheng, F. Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Environ., 144, 397-408.
Hsu, C. H., and Cheng, F. Y. (2019). Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res., 19(5), 1139-1151.
Huang, H. Y., Wang, S. H., Huang, W. X., Lin, N. H., Chuang, M. T., da Silva, A. M., Peng, C. M. (2020). Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols. J. Geophys. Res.: Atmos., 125(3), e2019JD031260.
International Geophysics. (1988) Chapter 13 Marine Atmospheric Boundary Layer. International Geophysics, 42, 197-222.
IPCC (2013). Chapter 7: Clouds and Aerosols. [Stocker, T.F., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC (2021). Chapter 6: Short-lived Climate Forcers. [Masson-Delmotte, V., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 817-922.
Jung, C. R., Hwang, B. F., Chen, W. T. (2018). Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut., 237, 1000-1010.
Kalthoff, N., Binder, H. J., Kossmann, M., Vögtlin, R., Corsmeier, U., Fiedler, F., Schlager, H. (1998). Temporal evolution and spatial variation of the boundary layer over complex terrain. Atmos. Environ., 32(7), 1179-1194.
Kanda, M. (2007). Progress in urban meteorology: A review. 気象集誌, 第2輯, 85, 363-383.
Kezoudi, M., et al. (2021). The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations. Atmosphere, 12(8), 1042.
Kiefer, M. T., Charney, J. J., Zhong, S., Heilman, W. E., Bian, X., Hom, J. L., Patterson, M. (2019). Evaluation of the ventilation index in complex terrain: a dispersion modeling study. J. Appl. Meteorol. Clim., 58(3), 551-568.
Kim, K. W., and Kim, Y. J. (2018). Characteristics of visibility-impairing aerosol observed during the routine monitoring periods in Gwangju, Korea. Atmos. Environ., 193, 40-56.
Kim, S. W., and Brown, R. D. (2021). Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sus. Energ. Rev., 148, 111256.
Kobayashi, A., Hayashida, S., Iwasaka, Y., Yamato, M., Ono, A. (1987). Consideration of depolarization ratio measurements by lidar-in relation to chemical composition of aerosol particles. J. Meteorol. Soc. JP. Ser. II, 65(2), 303-307.
Kovalev, V. A., and Eichinger, W. E. (2004). Elastic lidar: theory, practice, and analysis methods. John Wiley & Sons.
Lavdas, L.G. (1986). An atmospheric dispersion index for prescribed burning. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville, NC. Research Paper, SE-256.
Lewis, J.R., Welton, E.J., Molod, A.M., Joseph, E. (2013). Improved boundary layer depth retrievals from MPLNET: IMPROVED. J. Geophys. Res., 118, 9870-9879.
Li, H., Yang, Y., Hu, X.M., Huang, Z., Wang, G., Zhang, B., Zhang, T. (2017). Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. Res., 122, 4578-4593.
Lin, C. Y., Liu, S. C., Chou, C. C. K., Huang, S. J., Liu, C. M., Kuo, C. H., Young, C. Y. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ., 39(33), 6066-6076.
Lin, N. H., et al. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ., 78, 1-19.
Liu, J., Zheng, Y., Li, Z., Flynn, C., Welton, E. J., Cribb, M. (2011). Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 45(35), 6469-6480.
Liu, S., and Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23(21), 5790-5809.
Lolli, S., et al. (2020). Overview of the new Version 3 MicroPuLse NETwork (MPLNET) automatic precipitation detection algorithm. Remote Sens., 12(1), 71.
Lolli, S., et al. (2018). Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution, Remote Sens., 10, 1102.
Lolli, S., Delgado, R., Compton, J., Hoff, R. (2011). Planetary boundary layer height retrieval at UMBC in the frame of NOAA/ARL campaign. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII. SPIE, 8182, 146-154.
Luan, T., Guo, X., Guo, L., Zhang, T. (2018). Quantifying the relationship between PM 2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18(1), 203-225.
Lucchese, L., and Mitra, S. K. (2001). Colour image segmentation: a state-of-the-art survey. Proc. Indian Natl. Sci. Acad. Part A, 67(2), 207-222.
Min, J. S., Park, M. S., Chae, J. H., Kang, M. (2020). Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer, Atmos. Meas. Tech., 13(12), 6965–6987.
Moeng, C. H., and Sullivan, P. P. (1994). A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51(7), 999-1022.
Molod, A., Takacs, L., Suarez, M., Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev., 8(5), 1339-1356.
Müller, D., et al. (2010). Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties. J. Geophys. Res., 115, D07202.
Nakajima, T., et al. (2007). Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res.: Atmos., 112.
Nakoudi, K., Giannakaki, E., Dandou, A., Tombrou, M., Komppula, M. (2019). Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. Atmos. Meas. Tech., 12(5), 2595-2610.
Nee, J. B., Chiang, C. W., Hu, H. l., Hu, S. X., Yu, J. Y. (2007). Lidar measurements of Asian dust storms and dust cloud interactions. J. Geophys. Res.: Atmos., 112.
Noh, Y. M., Müller, D., Lee, H., Lee, K., Kim, K., Shin, S., Kim, Y. J. (2012). Estimation of radiative forcing by the dust and non-dust content in mixed East Asian pollution plumes on the basis of depolarization ratios measured with lidar. Atmos. Environ., 61, 221-231.
Olivier Boucher. Atmospheric Aerosols. Springer Netherlands, 2015.
Ou-Yang, C. F., et al. (2023). Integrated ground and vertical measurement techniques to characterize overhead atmosphere: Case studies of local versus transboundary pollution. Sci. Total Environ., 887, 163919.
Pasquill, F. (1961). The estimation of dispersion of wind-borne material. Meteor. Mag., 90, 33-49.
Pasquill, F. (1974). Atmospheric diffusion, Second Edition (2nd ed.). John Wiley & Sons, Inc., New York NY.
Pani, S. K., et al. (2016). Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7‐SEAS/Dongsha Experiment. J. Geophys. Res.: Atmos., 121(9), 4894-4906.
Paulson, C. A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Climate Appl. Meteor., 9(6), 857-861.
Rotach, M. W. (1999). On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos. Environ., 33(24-25), 4001-4008.
Sakai, T., Nagai, T., Zaizen, Y., Mano, Y. (2010). Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt., 49(23), 4441-4449.
Sakai, T., Nagai, T., Nakazato, M., Mano, Y., Matsumura, T. (2003). Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Appl. Opt., 42(36), 7103-7116.
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., Ostrow, H. (1989). MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote. Sens., 27(2), 145-153.
Sawamura, P. et al. (2012). Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere. Environ. Res. Lett., 7(3), 034013.
Schotland, R. (1974). Errors in the lidar measurements of atmospheric gases by differential absorption J. Appl. Meteor., 13. 71-77.
Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34(7), 1001-1027.
Seidel, D. J., Ao, C. O., Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res.: Atmos., 115(D16).
Senff, C., Bösenberg, J., Peters, G., Schaberl, T. (1996). Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and radar-RASS: a case study. Contrib. Atmos. Phys., 69. 161-176.
Shimada, S., Ohsawa, T., Chikaoka, S., Kozai, K. (2011). Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. Sola, 7, 109-112.
Shreffler, J.H. (1978). Detection of centripetal heat-island circulations from tower data in St. Louis. Bound.-Layer Meteor., 15, 229–242.
Sobel, I., and Feldman, G. (1968). A 3 × 3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project. a talk at the Stanford Artificial Project in 1986, 271-272.
Spinhirne, J. D., J. A. R. Rall, V. S. Scott (1995), Compact eye safe lidar systems, Rev. Laser Eng., 23, 112–118.
Spinhirne, J. D. (1993). Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 48-55.
Stull, R. B. (2015). Practical meteorology: an algebra-based survey of atmospheric science. University of British Columbia.
Stull, R. B. (1988). An introduction to boundary layer meteorology. Springer Science & Business Media.
Sugimoto, N., and Lee, C. H. (2006). Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Appl. Opt., 45(28), 7468-7474.
Sullivan, P. P., McWilliams, J. C., Weil, J. C., Patton, E. G., Fernando, H. J. (2020). Marine boundary layers above heterogeneous SST: Across-front winds. J. Atmos. Sci., 77(12), 4251-4275.
Tamura, Y., Ohkuma, T., Kawai, H., Uematsu, Y., Kondo, K. (2004). Revision of AIJ recommendations for wind loads on buildings. Structures 2004: Building on the Past, Securing the Future, 1-10.
Tsay, S. C., et al. (2013). From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmos. Environ., 78, 20-34.
Tsay, S. C., et al. (2016). Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol Air Qual. Res., 16(11), 2581-2602.
Turner, D.B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, Second Edition (2nd ed.). CRC Press.
Vallero, D. A. (2014). Fundamentals of air pollution. Academic press.
Vivone, G., D’Amico, G., Summa, D., Lolli, S., Amodeo, A., Bortoli, D., Pappalardo, G. (2021). Atmospheric boundary layer height estimation from aerosol lidar: A new approach based on morphological image processing techniques. Atmos. Chem. Phys., 21, 4249–4265.
Wang S. H., et al. (2020). Determination of Lidar Ratio for Major Aerosol Types over Western North Pacific Based on Long-Term MPLNET Data. Remote Sensing, 12(17), 2769.
Wang, S. H., Hung, W. T., Chang, S. C., Yen, M. C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005-2014. Atmos. Environ., 126, 76-86.
Wang, S. H., et al. (2015). Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol Air Qual. Res., 15, 2037-2050.
Wang, S. H., et al. (2011). First detailed observations of long-range transported dust over the northern South China Sea. Atmos. Environ., 45(27), 4804-4808.
Wang, Y. C., Wang, S. H., Lewis, J. R., Chang, S. C., Griffith, S. M. (2021). Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements. Aerosol Air Qual. Res., 21(5), 200336.
Wang, Y., et al. (2023). Climatology of the planetary boundary layer height over China and its characteristics during periods of extremely temperature. Atmos. Res., 294, 106960.
Weitkamp, C. (Ed.). (2006). Lidar: range-resolved optical remote sensing of the atmosphere. Springer Science & Business. 102, 399-443.
Welton, E. J., et al. (2000). Ground‐based lidar measurements of aerosols during ACE‐2: Instrument description, results, and comparisons with other ground‐based and airborne measurements. Tellus B. 52, 636-651.
Welton, E. J., and Campell, J.R. (2002). Micro-pulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 2089-2094.
Welton, E. J., J. R. Campbell, J. D. Spinhirne, V. S. Scott (2001). Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring, [edited by U. N. Singh, T. Itabe, and N. Sugimoto], Proc. SPIE, 4153, 151-158, Sendai, Japan.
Witte, B. M., Singler, R. F., & Bailey, S. C. (2017). Development of an unmanned aerial vehicle for the measurement of turbulence in the atmospheric boundary layer. Atmos., 8(10), 195.
Wu, P. C., and Huang, K. F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci. Rep., 11(1), 7593.
Yang, Y., Yim, S. H., Haywood, J., Osborne, M., Chan, J. C., Zeng, Z., Cheng, J. C. (2019). Characteristics of heavy particulate matter pollution events over Hong Kong and their relationships with vertical wind profiles using high‐time‐resolution Doppler lidar measurements. J. Geophys. Res.: Atmos., 124(16), 9609-9623.
Yen, M. C., C. M. Peng, T. C. Chen, C. S. Chen, N. H. Lin, R. Y. Tzeng, Y. A. Lee, C. C. Lin (2013). Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmos. Environ., 78, 35-50.
Young, A. T. (1982). Rayleigh scattering. Physics Today, 35, 42.
王聖翔、柯立晉、潘巧玲、劉豪聯、李育棋、游志淇、邱思翰(2023)。新一代低層大氣無人機探空系統。《前瞻科技與管理》,12(1),38-59。
江智偉、倪簡白(2007)。光達遙測中壢地區夜間邊界層變化和低層噴流之討論。《大氣科學》, 35(1), 1-11.
官岱煒、林博雄(2005)。台灣地區大氣探空剖面特徵分析(Doctoral dissertation, National Taiwan University Graduate Institute of Atmospheric Science)。
柯立晉、王聖翔、黃翔昱、王悅晨、莊翔富、洪若雅、游志淇、張順欽(2018)。 應用無人機觀測大氣邊界層結構. J. Photogramm. Remote Sensing, 23(2), 103-113. |