博碩士論文 111322020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.144.244.117
姓名 徐澤林(Tse-Lin Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 顆粒阻尼器在軌道系統振動控制之應用
相關論文
★ 顆粒調諧質量阻尼器最佳化設計於軌道系統減振之應用★ 單擺式電磁調諧質量阻尼器外加飛輪於結構振動控制之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討顆粒阻尼器(Particle Damper, PD)在軌道系統中的應用,以減少列車運行時產生的振動。顆粒阻尼器的原理在於將多種金屬、碳化鎢、陶瓷或其他材質的小顆粒置於振動結構的空腔內或附著於其外殼內,以降低主結構之響應。當結構振動時,動能通過顆粒間的非彈性碰撞和與外殼內壁的摩擦作用消耗,從而產生顯著的阻尼效果。顆粒阻尼器的減振性能取決於顆粒材料、尺寸、形狀、填充率及外加激振等多項因素,因此PD是一種複雜的非線性系統。過去的研究多採用粒子動力學、離散元素法和多相流法等方法,本研究將複雜的PD系統轉換為等效系統,以分析其減振機制。顆粒阻尼器相較於傳統阻尼器具有多項優勢,如在惡劣環境中能正常運作、在較寬頻率範圍內有效、對溫度和持續時間不敏感且維護成本低。首先,本研究建立了顆粒阻尼器的數學模型,模擬和分析耦合軌道-PD系統的動力行為。該模型比對了不同填充物的實驗之多項參數。結果顯示,模擬結果與實驗數據在時間域與頻率域一致,確保模型的準確性。
隨著模擬軟體的興起,本研究利用MATLAB、ADAMS/Rail和COMSOL有限元素軟體進行聯合模擬,以探討PD之減振效能。建立了短軌(0.8 m)和長軌(14 m)模型。在短軌模型中,施加掃頻外力觀察其頻率域響應,結果顯示裝置等效PD後,在目標頻率範圍內的振動顯著下降。在長軌模型中,通過模擬不同車速的列車載重作用,獲取輪軌接觸力歷時,並將其施加於長軌模型,觀察在裝置PD後的減振效果。結果表明,PD能有效減少列車於不同車速運行期間的軌道振動。此外,研究發現全配置阻尼器相比半配置阻尼器具有更好的減振效果,但考慮到成本因素,半配置阻尼器在經濟性上更具優勢。這些模擬和實驗結果證明顆粒阻尼器有望成為軌道減振工法中創新且高效減振方案,促進鐵道運輸安全與舒適性。
摘要(英) This study aims to explores the application of particle dampers (PD) in rail systems to reduce the vibrations generated during train operations. The principle of particle dampers involves placing small particles made of various materials such as metals, tungsten carbide, ceramics, or other substances within the cavity of a vibrating structure or attached to its shell to reduce the response of the main structure. When the structure vibrates, kinetic energy is dissipated through inelastic collisions between particles and friction with the inner walls of the shell, resulting in a significant damping effect. The vibration reduction performance of particle dampers depends on various factors, including particle’s material, size, shape, fill rate and external excitation, making PD a complex nonlinear system. Previous research has often employed methods such as particle dynamics, discrete element methods, and multiphase flow methods. In this study, the complex PD system was transformed into an equivalent system to analyze its vibration reduction mechanism. Compared to traditional dampers, particle dampers offer several advantages, such as normal operation in harsh environments, effectiveness over a wide frequency range, insensitivity to temperature and duration, and low maintenance costs.
First, a mathematical model of the particle damper was established to simulate and analyze the dynamic behavior of the coupled track-PD system. The model compares multiple parameters from experiments with different fillings. The results show that the simulation data aligns with experimental data in both time domain and frequency domain, thereby ensuring the accuracy of the model. With the rise of simulation software, this study utilizes MATLAB, ADAMS/Rail, and COMSOL finite element software for joint simulations to explore the vibration reduction performance of PD. The model of the short rails (0.8 m) and long rails (14 m) were established. In the short rail model, sweep frequency forces were applied to observe its frequency domain response. The results indicate that after applying the equivalent PD, vibrations within the target frequency range significantly decreased. In the long rail model, by simulating the train load at different speeds, wheel-rail contact force histories were obtained and applied to the long rail model to observe the vibration reduction effect after applying PD. The results show that PD can effectively reduce track vibrations during train operations at various speeds. Additionally, the study found that fully configured dampers have better vibration reduction effects compared to semi-configured dampers. However, considering cost factors, semi-configured dampers are more economically advantageous. These simulation and experimental results demonstrate that particle dampers are expected to become an innovative and efficient vibration reduction solution for track vibration reduction, promoting the safety and comfort of railway transportation.
關鍵字(中) ★ 顆粒阻尼器
★ 軌道交通系統
★ 振動控制
★ 等效阻尼比
★ 列車引致激振力
關鍵字(英) ★ Particle Damper
★ Rail Transit System
★ Vibration Control
★ Equivalent Damping Ratio
★ Train-Induced Excitation Force
論文目次 摘要 I
ABSTRACT II
誌謝 IV
圖目錄 IX
表目錄 XIV
符號說明 XV
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 2
1-3 研究範圍及方法流程圖 4
第二章 理論和研究方法介紹 7
2-1 快速傅立葉轉換(Fast Fourier Transform, FFT) 7
2-2 頻率響應函數(Frequency Response Function, FRF) 8
2-3 單自由度結構頻率響應函數 8
2-4 數學模型之建立 10
2-4-1 顆粒阻尼等效模型 10
2-4-2 顆粒阻尼器耦合有阻尼軌道系統之模型建立 11
2-5 衝擊錘原理 13
第三章 減振性能實驗驗證 14
3-1 實驗介紹 14
3-2 顆粒阻尼器試體 15
3-3 實驗裝置和量測器材介紹 18
3-3-1 夾具 19
3-3-2 量測系統 20
3-3-3 響應量測 23
3-4 實驗結果分析 26
3-4-1 軌道系統 26
3-4-2 鎢粉填充PD 28
3-4-3 薄型矽油填充PD 30
3-4-4 陶瓷球填充PD 32
3-4-5 不鏽鋼球填充PD 37
3-5 實驗結果分析 43
第四章 數學模型驗證與參數識別 45
4-1 擬合步驟 45
4-2 濾波 47
4-3 線性迴歸方法 48
4-3-1 MATLAB Curve fitting toolbox介紹和操作說明 48
4-3-2 使用高斯方程和有理數方程之比較 50
4-4 直接搜尋法 51
4-5 狀態空間法 52
4-6 模型擬合與參數識別 54
4-7 顆粒材料填充PD之等效模型參數 65
4-8 數值模型之最佳化 68
第五章 車輛-軌道模型建立 71
5-1 ADAMS軟體簡介 71
5-2 模型介紹 71
5-2-1 車輛介紹 72
5-2-2 軌道模型建立 74
5-3 列車動態模擬 74
5-3-1 建模操作說明 74
5-3-2 分析時間間隔 76
5-3-3 輪軌接觸力類型簡介 77
5-3-4 ADAMS/Rail參數命名和標記說明 78
5-4 軌道不平順模擬 79
5-4-1 DIP不平順度模型 79
5-4-2 RAMP不平順度模型 80
5-4-3 SINUS不平順度模型 81
5-5 不同車速下SINUS接觸力分析 82
第六章 軌道-顆粒阻尼器模型分析 85
6-1 COMSOL軟體介紹 85
6-2 建立有限元軌道模型 86
6-3 短軌模型 87
6-3-1 短軌模型介紹 87
6-3-2 裝置等效顆粒阻尼短軌模型介紹 88
6-4 短軌模型集中力結果討論 89
6-4-1 正弦掃頻力分析 90
6-4-2 響應情況比較 91
6-5 長軌模型 92
6-5-1 長軌模型介紹 94
6-5-2 間隔配置阻尼之長軌模型 95
6-5-3 全配置阻尼之長軌模型介紹 96
6-6 長軌時域響應比較 97
6-6-1 車速20m/s 97
6-6-2 車速25m/s 99
6-6-3 車速30m/s 100
6-6-4 車速35m/s 102
6-6-5 長軌模型不同車速結果討論 104
第七章 結論與建議 106
7-1 結論 106
7-2 建議 107
參考文獻 108
附件A-1 短軌建模流程 114
附件A-2 裝置等效顆粒阻尼短軌建模流程 125
附件B-1 長軌建模流程 134
附件B-2 裝置等效顆粒阻尼長軌建模流程 148
參考文獻 [1] Thompson, D. (2008). Railway noise and vibration: mechanisms, modelling and means of control. Elsevier.
[2] Xin, T., Wang, S., Gao, L., Huo, H., Ding, Y., Wang, P., Chen, P., & Liu, P. (2020). Field measurement of rail corrugation influence on environmental noise and vibration: A case study in China. Measurement, 164, 108084.
[3] Remington, P. J. (1987). Wheel/rail rolling noise, I: Theoretical analysis. The Journal of the Acoustical Society of America, 81(6), 1805-1823.
[4] Hussein, M. F. M., & Hunt, H. E. M. (2006). Modelling of floating-slab tracks with continuous slabs under oscillating moving loads. Journal of Sound and Vibration, 297(1-2), 37-54.
[5] Zhao, C., Wang, P., Yi, Q., Sheng, X., & Lu, J. (2018). A detailed experimental study of the validity and applicability of slotted stand-off layer rail dampers in reducing railway vibration and noise. Journal of Low Frequency Noise, Vibration and Active Control, 37(4), 896-910.
[6] Kedia, N. K., Kumar, A., & Singh, Y. (2021). Effect of rail irregularities and rail pad on track vibration and noise. KSCE Journal of Civil Engineering, 25(4), 1341-1352.
[7] Dumitriu, M., & Cruceanu, I. C. (2017). On the rolling noise reduction by using the rail damper. Journal of Engineering Science & Technology Review, 10(6),87-95
[8] Merideno, I., Nieto, J., Gil-Negrete, N., Ortiz, J. G. G., Landaberea, A., & Iartza, J. (2014). Theoretical prediction of the damping of a railway wheel with sandwich-type dampers. Journal of Sound and Vibration, 333(20), 4897-4911.
[9] Frahm, H. (1911). U.S. Patent No. 989,958. Washington, DC: U.S. Patent and Trademark Office.
[10] Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the dynamic vibration absorber. Journal of Fluids Engineering, 49(2).
[11] Crandall, S. H., & Mark, W. D. (2014). Random vibration in mechanical systems. Academic Press.
[12] Bakre, S. V., & Jangid, R. S. (2007). Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3), 448-470.
[13] Den Hartog, J., & fourth edition Mechanical, J. D. H. (1956). Vibrations. McGraw-Hill Book Company, Inc., New York.
[14] Tanaka, H., & Mak, C. Y. (1983). Effect of tuned mass dampers on wind induced response of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 14(1-3), 357-368.
[15] Casciati, F., & Giuliano, F. (2009). Performance of multi-TMD in the towers of suspension bridges. Journal of Vibration and Control, 15(6), 821-847.
[16] Dallard, P., Fitzpatrick, A. J., Flint, A., Le Bourva, S., Low, A., Ridsdill Smith, R. M., & Willford, M. (2001). The London millennium footbridge. Structural Engineer, 79(22), 17-21.
[17] Kourakis, I. (2007). Structural systems and tuned mass dampers of super-tall buildings: case study of Taipei 101 (Doctoral dissertation, Massachusetts Institute of Technology).
[18] Ho, W., Wong, B., & England, D. (2012). Tuned mass damper for rail noise control. In Noise and Vibration Mitigation for Rail Transportation Systems: Proceedings of the 10th International Workshop on Railway Noise, Nagahama, Japan, 18–22 October 2010 (pp. 89-96). Tokyo: Springer Japan.
[19] Cai, X. P., Wang, Q. H., Li, D. C., & Liang, Y. K. (2020). Theoretical study of long elastic sleeper track to reduce vibrations induced by subway trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234(5), 538-549.
[20] Indraratna, B., Nimbalkar, S., Navaratnarajah, S. K., Rujikiatkamjorn, C., & Neville, T. (2014). Use of shock mats for mitigating degradation of railroad ballast.
[21] Li, W., Wang, A., Gao, X., Ju, L., & Liu, L. (2021). Development of multi-band tuned rail damper for rail vibration control. Applied Acoustics, 184, 108370.
[22] Paget, A. L. (1937). Vibration in steam turbine buckets and damping by impacts. Engineering, 143(Mar), 305-307.
[23] Panossian, H. V. (1992). Structural damping enhancement via non-obstructive particle damping technique.
[24] Friend, R. D., & Kinra, V. K. (2000). Particle impact damping. Journal of Sound and Vibration, 233(1), 93-118.
[25] Hollkamp, J. J., & Gordon, R. W. (1998, June). Experiments with particle damping. In Smart structures and materials 1998: Passive damping and isolation (Vol. 3327, pp. 2-12). SPIE.
[26] Fowler, B. L., Flint, E. M., & Olson, S. E. (2000, April). Effectiveness and predictability of particle damping. In Smart Structures and Materials 2000: Damping and Isolation (Vol. 3989, pp. 356-367). SPIE.
[27] Popplewell, N., & Semercigil, S. E. (1989). Performance of the bean bag impact damper for a sinusoidal external force. Journal of Sound and Vibration, 133(2), 193-223.
[28] Xu, Z., Wang, M. Y., & Chen, T. (2004). An experimental study of particle damping for beams and plates. Journal of Vibration and Acoustics, 126(1), 141-148.
[29] Li, K., & Darby, A. P. (2006). An experimental investigation into the use of a buffered impact damper. Journal of Sound and Vibration, 291(3-5), 844-860.
[30] Darabi, B., & Rongong, J. A. (2012). Polymeric particle dampers under steady-state vertical vibrations. Journal of Sound and Vibration, 331(14), 3304-3316.
[31] Bai, X. M., Shah, B., Keer, L. M., Wang, Q. J., & Snurr, R. Q. (2009). Particle dynamics simulations of a piston-based particle damper. Powder Technology, 189(1), 115-125.
[32] Lu, Z., Lu, X., Jiang, H., & F. Masri, S. (2014). Discrete element method simulation and experimental validation of particle damper system. Engineering Computations, 31(4), 810-823.
[33] Wu, C. J., Liao, W. H., & Wang, M. Y. (2004). Modeling of granular particle damping using multiphase flow theory of gas-particle. Journal of Vibration and Acoustics., 126(2), 196-201.
[34] Lu, Z., Chen, X., Zhang, D., & Dai, K. (2017). Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthquake Engineering & Structural Dynamics, 46(5), 697-714.
[35] Saeki, M. (2002). Impact damping with granular materials in a horizontally vibrating system. Journal of Sound and Vibration, 251(1), 153-161.
[36] Saeki, M. (2005). Analytical study of multi-particle damping. Journal of Sound and Vibration, 281(3-5), 1133-1144.
[37] Moore, J. J., Palazzolo, A. B., Gadangi, R., Nale, T. A., Klusman, S. A., Brown, G. V., & Kascak, A. F. (1995). A forced response analysis and application of impact dampers to rotordynamic vibration suppression in a cryogenic environment.Journal of Vibration and Acoustics, 117(2), 300-310.
[38] Xiao, W., Huang, Y., Jiang, H., Lin, H., & Li, J. (2016). Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads. Particuology, 27, 40-50.
[39] Lei, G., Xu, G., Zhang, X., Zhang, Y., Song, Z., & Xu, W. (2019). Study on dynamic monitoring of wire rope tension based on the particle damping sensor. Sensors, 19(2), 388.
[40] 張筑壹(2002)。分析軌道不整對脫軌風險之影響。國立成功大學土木工程研究所碩士論文
[41] Harder, R. F. (2001, April). Dynamic modeling and simulation of three-piece freight vehicle suspensions with nonlinear frictional behaviour using Adams/Rail. In Proceedings of the 2001 IEEE/ASME Joint Railroad Conference (Cat. No. 01CH37235) (pp. 185-191). IEEE.
[42] Kouroussis, G., Verlinden, O., & Conti, C. J. V. S. D. (2012). Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic. Vehicle System Dynamics, 50(4), 619-639.
[43] Oregui, M., Li, Z., & Dollevoet, R. J. I. J. (2015). An investigation into the modeling of railway fastening. International Journal of Mechanical Sciences, 92, 1-11.
[44] Oregui, M., Li, Z., & Dollevoet, R. (2016). An investigation into the vertical dynamics of tracks with monoblock sleepers with a 3D finite-element model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(3), 891-908.
[45] Ho, W., Cheung, C., Cheng, M., & Lin, L. (2021). Half Installation of rail dampers. InNoise and Vibration Mitigation for Rail Transportation Systems: Proceedings of the 13th International Workshop on Railway Noise, 16-20 September 2019, Ghent, Belgium (pp. 654-661). Springer International Publishing.
[46] Yao, B., Chen, Q., Xiang, H. Y., & Gao, X. (2014). Experimental and theoretical investigation on dynamic properties of tuned particle damper. International Journal of Mechanical Sciences, 80, 122-130.
[47] Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of computation, 19(90), 297-301.
[48] Newland, D. E. (2005). An introduction to random vibrations, spectral & wavelet analysis, Third Edition. Dover Publications.
[49] 王成国. (2005). MSC. ADAMS/Rail 基础教程.北京:科学出版社出版
指導教授 林志軒(Chih-Shiuan Lin) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明