摘要(英) |
Taiwan is located in the seismically active Pacific Ring of Fire and has experienced numerous catastrophic earthquakes throughout its history. In recent years, the issue of soil liquefaction following these earthquakes has garnered increasing attention. This study employs FLAC2D (version 7.0), a finite difference software, to investigate the seismic behavior of a single building situated on liquefied soil layers in Taiwan. The ground conditions for the study are based on simplified soil layers derived from liquefaction borehole data from the 1999 Chi-Chi Earthquake and the 2016 Meinong Earthquake, using the PM4Sand model to simulate the liquefied soil layers. The building conditions selected for simulation are typical five-story reinforced concrete shallow foundation structures commonly found in Taiwan. The seismic input is based on the waveforms from the 1999 Chi-Chi Earthquake.This study conducts a total of fourteen numerical simulation tests, examining three major variables: changes in groundwater levels, different foundation types, and shallow ground improvement methods. The study aims to explore the liquefaction behavior of buildings under various conditions.
The results indicate that lowering the groundwater level significantly enhances the building′s resistance to liquefaction. However, different foundation types show poor liquefaction resistance due to factors such as weight and stress influence zones. The shallow ground improvement methods, on the other hand, do not demonstrate effective liquefaction resistance due to issues like tilting moments of the superstructure and contact stresses of the foundation plate, raising doubts about their applicability in Taiwan. |
參考文獻 |
1. Boulanger, R. W., and Ziotopoulou, K.(2012) “PM4Sand (Version 2.0): A sand plasticity model for earthquake engineering applications.” Technical Report No. UCD/CGM-12/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA.
2. Boulanger, R. W., & Ziotopoulou, K.(2015) “PM4Sand (Version 3): A sand plasticity model for earthquake engineering applications.” Technical Report No. UCD/CGM-15/07, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA.
3. Cundall, P.A., Hansteen, H., Lacasse, S., and Selnes, P.B.(1980) “NESSI – soil structure interaction program for dynamic and static problems,” Report No. 51508-9, Norwegian Geotechnical Institute.
4. Chyi-Tyi Lee and Bi-Ru Tsai.(2008) “Mapping Vs30 in Taiwan.” Terrestrial, Atmospheric and Oceanic Sciences., Vol. 19, No. 6, 671-682.
5. Idriss, I. M., and Boulanger, R. W. (2008) “Soil liquefaction during earthquakes.” Monograph, MNO-12, Earthquake Engineering Research Institute, Oakland, CA,261.
6. Kuhlemeyer, R.L. and Lysmer, J.(1973) “Finite element method accuracy for wave propagation problem.” J. Soil Mechanics & Foundations, Div., ASCE, 99(SM5):421 427.
7. Kohji Tokimatsua , Kazuya Hinob , Hiroko Suzukic , Kyoko Ohnod , Shuji Tamurad ,Yasutsugu Suzukie.(2019) “Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation”, Soil Dynamics and Earthquake Engineering, pp.268-279.
8. Mihailo D. Trifunac.(1971) “Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves.” Bulletin of the Seismological Society of America. Vol. 61, No. 6, pp. 1755-1770.
9. Seed, H.B. and Idriss, I.M. (1970) “Soil moduli and damping factors for dynamic response analysis,” Report No. UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley.
10. Vucetic, M. and Dobry, R.(1991) “Effect of soil plasticity on cyclic response.” Journal of Geotechnical Engineering, 117, 89-107.
11. 大崎順彦。(1959) 「東京地盤図」。技報堂,pp.18〜19。
12. 日本道路協會。(1996) 「道路橋示方書‧同解說,V 耐震設計編」。
13. 日本國土交通省都市局都市安全課。(2019)「市街地液状化対策推進ガイダンス」。
14. 內政部國土管理署。建築物基礎構造設計規範。(2023)
15. 內政部國土管理署。建築物混凝土結構設計規範。(2023)
16. 佐原守、西山高士、樋口俊一、山本彰、石井雄輔。(2012)「表層改良による液状化変状抑制効果の一評価法」。大林組技術研究所報,No.76.
17. 谷和夫、松下克也、橋本隆雄、山本彰、竹內秀克、野田利弘、規矩大義、大林淳、清田隆。(2014)「浅層盤状改良工法による戸建て住宅の液状化被害軽減効果の検証と経済性評価」。地盤工学ジャーナル,Vol.9,No.4,533-553.
18. 春日井麻里、大島昭彥、山口智也。(2022)「大阪・神戸地域の浅層地盤モデルを用いた地下水位低下による 地盤沈下量と液状化対策効果の予測」。地盤工学ジャーナルVol.17,No.4,537-550.
19. 范恩碩。(2004)「以九二一集集地震案例探討細料對液化潛能評估之影響」。博士論文,國立成功大學土木工程研究所,台南市。
20. 翁作新、林炳森、褚炳麟。(2000)「員林、霧峰及南投地區土壤液化特性」。地工技術,第81期,第47-56頁。
21. 陳邑銘。(2022)「PM4Sand模型台灣常用簡易土壤液化評估法之參數校正」。碩士論文,國立中興大學土木工程學系,台中市。
22. 亞新工程顧問公司。(2000)「土壤液化評估與處理對策研擬第一期計劃(彰化員林鎮、大村鄉及社頭鄉)總報告」。行政院國家科學委員會計畫(編號:99068)。
23. 楊志文。(2013)「全機率土壤液化評估法之研究」。博士論文,國立中央大學土木工程學系,桃園市。
24. 劉耕溥。(2021)「2016年美濃地震台南安南和新市區建築物沉陷量分析與探討」。碩士論文,國立高雄科技大學土木工程系,高雄市。
25. 盧志杰。(2017)「低矮建物與液化土層互制行為之簡化分析模式」。科技部補助專題研究計畫成果報告(計畫編號:MOST 105-2218-E-492-007-)。 |