博碩士論文 110322011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.144.243.25
姓名 劉辰星(LIU, CHEN-XING)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多項式摩擦單擺支承於鋼筋混凝土建築之非線性動力歷時分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據過去經驗,傳統有限元素法在面對大量非線性的問題時容易產生數值發散問題,導致分析時間過長或是無法順利完成分析,為解決此問題本研究使用基於等效節點割線特性之隱式動力分析程序(Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties, IDAP-ENSP)。
本研究分析之模型為位於台中之5層樓鋼筋混凝土建物,因其建造年代較為久遠,分析上應考慮到其勁度衰減之情形,因此本研究新增Modified Takeda模型進入IDAP-ENSP中,並由於梁斷面上下層配筋量不同,吾將模型改善為可考慮斷面上下層配筋不同情形。
分析上雖然非線性動力歷時分析能夠更真實的反應結構物面臨地震作用下之實際行為,但非線性動力歷時分析較為繁複且礙於現今市面上可用軟體其計算上耗時且容易數值發散,且難以模擬建物破壞後之高度非線性之行為,因此使用上較為困難,因此工程師較習慣以非線性靜力分析代替。本研究將考慮目標建物倒塌破壞前之行為,並分析1.未隔震 2.使用FPS隔震 3.使用PFPI隔震,與(1)使用Takeda模型(2)使用Modified Takeda模型作為塑鉸遲滯行為之建物。可得知使用PFPI之隔震效果最佳,其次FPS最後是未隔震建物;遲滯模型的選用上因本研究建物年代較為久遠,房屋會有所損傷耐震能力會衰減因此使用Modified Takeda較為合適。
本研究亦比較傳統使用性能設計考慮層間變位之方式與本研究直接設定構件降伏、破壞行為之關聯。可以發現考慮層間變位之結果本研究結論相符。
摘要(英) Based on past experience, traditional finite element methods tend to
encounter numerical divergence issues when dealing with highly nonlinear
problems, leading to prolonged analysis times or the inability to complete the
analysis successfully. To address this issue, this study employs an Implicit
Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties
(IDAP-ENSP).
The model analyzed in this study is a five-story reinforced concrete building
located in Taichung. Given its age, the analysis considers the stiffness degradation
of the structure. Therefore, this study incorporates the Modified Takeda model
into IDAP-ENSP. Additionally, due to the different reinforcement amounts in the
upper and lower layers of the beam section, the model is improved to account for
these differences.
Although nonlinear dynamic time-history analysis can more realistically
reflect the actual behavior of structures under seismic action, it is more complex
and, given the current software available on the market, time-consuming in
calculation and prone to numerical divergence. Moreover, it is difficult to simulate
highly nonlinear behavior after the building′s failure, making its use more
challenging. As a result, engineers often prefer nonlinear static analysis instead.
This study considers the behavior of the target building before collapse and
analyzes three scenarios: 1. without seismic isolation, 2. with FPS seismic
isolation, and 3. with PFPI seismic isolation. It also examines the building′s plastic
hinge hysteretic behavior using (1) the Takeda model and (2) the Modified Takeda
model. The results show that PFPI provides the best seismic isolation, followed
by FPS, and lastly, the building without seismic isolation. Given the building′s
age, which may lead to reduced seismic resistance due to damage, the Modified
Takeda model is more appropriate.
ii
This study also compares the traditional performance design method, which
considers inter-story displacement, with this study′s approach of directly setting
the relationship between component yield and failure behavior. It is found that the
results considering inter-story displacement are consistent with the conclusions of
this study.
關鍵字(中) ★ 多項式摩擦單擺支承
★ 摩擦單擺支承
★ Takeda 遲滯模型
★ Modified Takeda 模型
★ 基於等效節點割線特性之隱式動力分析程序
★ 近斷層震波
關鍵字(英) ★ Polynomial Friction Pendulum Isolator
★ Friction Pendulum Isolator
★ Takeda model
★ modified Takeda model
★ Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties
★ Near-Fault Ground Motion
論文目次 目錄
摘要 i
ABSTRACT ii
目錄 iv
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 近遠域震波特性 2
1.2.2 有關耐震評估相關文獻 3
1.2.3 變曲率摩擦單擺支承 4
1.2.4 Takeda相關之遲滯模型 7
1.2.5 新隱式非線性動力有限元素法 8
1.3 研究內容 8
第二章 目標建物與分析方法說明 10
2.1 目標建物介紹 10
2.1.1 目標反應譜 11
2.2 目標建物基底隔震設定 12
2.3 建物梁柱版性質與塑鉸設定 14
2.3.1 梁柱版性質 14
2.3.2 塑鉸設定 15
2.4 本文所使用非線性動力分析方式 16
2.4.1 基於等效節點割線特性之隱式動力分析程序 16
2.4.2 分析方式與流程 17
第三章 遲滯模型與建物數值模型建立 28
3.1 ETABS模型說明 28
3.1.1 ETABS建模流程 28
3.1.2 IDAP-ENSP模型 29
3.2 連結元素模擬塑鉸之遲滯行為 29
3.2.1 Takeda模型 30
3.2.2 Modified Takeda模型 31
第四章 數值模型驗證 41
4.1 建物基本性質 41
4.1.1 建物週期 41
4.1.2 輸入震波 41
4.2 IDAP-ENSP正確性比對 41
4.2.1 線性桁架元素模擬膜之行為說明 42
4.2.2 ETABS軟體之塑鉸與阻尼設定 42
4.2.3 IDAP-ENSP與ETABS分析結果比較 44
第五章 建物案例分析與討論 62
5.1 輸入震波 62
5.2 地震作用下建物反應 63
5.2.1 單向地震力作用下之非線性反應 63
5.2.2 三向地震力作用下之非線性反應 66
5.2.3 Modified Takeda與Takeda遲滯行為差異 68
5.3 建物使用PFPI與傳統FPS之隔震效能比較 68
5.4 與傳統性能設計比較 70
第六章 結論與建議 124
6.1 結論 124
6.2 建議與未來研究方向 125
參考文獻 127
參考文獻 參考文獻
[1] Lee, G. C. and Loh, C., “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1999.
[2] Ghobarah, A. and Ali, H. M., “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166, 1998.
[3] Basöz, N. I. and Kiremidjian, A. S., “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35., 1998.
[4] Bruneau, M., Wilson, J. C., and Tremblay, R., “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713, 1996.
[5] Otsuka, H. and et al., “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33, 1997.
[6] Basöz N. I., “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54, 1999.
[7] Kosa, K., “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154, 2001.
[8] Kawashima, K., “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197, 2002.
[9] Martelli, A. and Forni, M., “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294, 1998.
[10] Celebi, M., “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109, 1996.
[11] Kelly, J. M., “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285, 1998.
[12] Asher, J. W., “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes.” Proceedings of Structures Congress XV (ASCE), 1128-1132, 1997.
[13] Bozorgnia, Y., Manhin, S. A., Brady A. G., “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432., 1998.
[14] Fujita, T., “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1(3), 295-300, 1998.
[15] Naeim, F. and Kelly, J. M., Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc., 1999.
[16] Yang, Y. B., Lu, L.Y., Yau, J. D., “Chapter 22: Structure and Equipment Isolation,” Vibration and Shock Handbook, edited by C. W. de Silva, CRC Press, Taylor & Francis Group, 2005.
[17] 盧煉元、鍾立來,「國內外結構控制技術之進展」,土木技術(防災科技專題),四月號,第14期,81-95頁,1999。
[18] 李姿瑩、盧煉元、曹哲瑋、洪文孝,「應用變頻式摩擦單擺支承於不等高橋墩橋梁之實驗」,中華民國第十四屆結構工程研討會暨第四屆地震工程研討會,民國107年11月24-26日,台中,台灣,2018。
[19] 林宜泓,「含變頻滑動支承不等高橋墩橋梁之最佳化設計」,國立中央大學土木系碩士論文,2022。
[20] 羅定軒,「應用勁度可變式滑動隔震支承於平面曲梁橋之動力分析」,國立中央大學土木系碩士論文,2023。

[21] 盧煉元,「結構健康診斷及控制研究:大型結構實驗驗証--子計畫:變曲面滑動隔震系統之近斷層隔震應用研究」,行政院國家科學委員會專題研究計畫,2006。
[22] Jangid, R.S, “Optimum friction pendulum system for near-fault motions.” Engineering Structures, Vol.27, No.3, 349-359, 2004.
[23] 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,第23-48頁,2003。
[24] Lu, L. Y., Lee, T. Y., Juang, S. Y., Yeh, S. W., “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982, 2013.
[25] 盧煉元、李姿瑩、葉奕麟、張洵,「變頻式搖擺支承於近域隔震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298,2010。
[26] 盧煉元、施明祥、曾旭玟、吳政彥,「滑動隔震支承之研發與其受近斷層震波行為之實驗探討」,結構工程,第二十卷,第三期,29-59頁,2005。
[27] Lu, L.Y., Shih, M.H., Wu, C.Y., “Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures,” Proceedings of the 13th World Conference on Earthquake Engineering, August 1-6, Vancouver, BC, Canada, Paper no. 3264, 2004.
[28] Lu, L. Y., Lee, T. Y., Yeh, S. W., “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627, 2011.
[29] 陳奕翔,「含變頻滑動支承及抗拉拔裝置橋梁在水平雙向震波下之振動台實驗」,國立中央大學土木系碩士論文,2022。
[30] Ates, S., and Constantinou, M. C., “Example of application of response history analysis for seismically isolated curved bridges on drilled shaft with springs representing soil.” Soil Dynamics and Earthquake Engineering, 31(3), 334-350, 2011.
[31] Ates, S., and Constantinou, M. C., “Example of application of response spectrum analysis for seismically isolated curved bridges including soil-foundation effects.” Soil Dynamics and Earthquake Engineering, 31(4), 648-661, 2011.
[32] Kataria, N. P. and Jangid, R. S., “Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system.” Advances in Structural Engineering, 19(7), 1103-1117, 2016.
[33] Abdelnaby, A. E., Frankie, T. M., Elnashai, A. S., Spencer, B. F., Kuchma, D. A., Silva, P., et al., “Numerical and hybrid analysis of a curved bridge and methods of numerical model calibration.” Engineering Structures, 70, 234-245, 2014.
[34] Yan, L., Li, Q., Han, C., and Jiang, H., “Shaking table tests of curved bridge considering bearing friction sliding isolation.” Shock Vib., 2016, 1-14, 2014.
[35] Zhi, Z., Xiaojun, L., Riqing, L., and Chenning, S., “Shaking table tests and numerical simulations of a small radius curved bridge considering SSI effect.” Soil Dynamics and Earthquake Engineering, 118, 1-18, 2019.
[36] Chai, J. F. and C. H. Loh, “Near-fault ground motion and its effect on civil structures.” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. 70-81, 2000.
[37] 葉超雄,「近斷層建築物設計地震力之研究」,921集集地震與建築物耐震技術研討會論文集,內政部建研所企劃,台北,1999年12月。
[38] Hall, J. F., T. H. Heaton, and M. W. Halling, D. J. Wald., “Near-source ground motions and its effects on flexible buildings.” Earthquake Spectra, 11, 569-605, 1995.
[39] Loh, C. H., “Interpretation of structural damage in 921 Chi-Chi-earthquake.” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp 5-1 ~ 5-77, 1999.
[40] Liao, W. I., C. H. Loh and S. Wan, “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380, 2000.
[41] Makris N. and Chang, S. P., “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1998.
[42] 張婉妮,「近斷層震波對滑動隔震結構之影響」,高雄第一科技大學營建工程系碩士論文,2001。
[43] Pranesh, M. and Sinha, R., “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627, 2000.
[44] Pranesh, M. and Sinha, R., “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882, 2002.
[45] Pranesh, M. and Sinha, R., “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139, 2004.
[46] Pranesh, M. and Sinha, R., “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105, 2004.
[47] 吳政彥,「變曲率滑動隔震結構之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2004。
[48] 盧煉元,吳政彥,葉奕麟 ,「圓錐形摩擦單擺支承之隔震應用研究」結構工程,二十四卷,第二期,91-36頁,2009。
[49] Lu, L. Y., Shih, M. H., and Wu, C. Y., “Sliding isolation using variable frequency bearings for near-fault ground motions.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164, 2006.
[50] 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2006。
[51] 董佩宜,「應用多項式摩擦單擺支承之隔震橋梁研究」,國立中央大學土木系碩士論文,2010。
[52] Williams, D. and Godden, W., “Seismic response of long curved bridge: experimental model studies.” Earthquake Engineering and Structural Dynamics, 7(2), 107-128, 1979.
[53] Han, Q., Du, X., and Liu, J. et al., “Seismic damage of highway bridges during the 2008 Wenchuan earthquake” Earthq. Eng. Eng. Vib., 8(2), 263–73, 2009.
[54] Seo, J. and Linzell, D. G., “Horizontally curved steel bridge seismic vulnerability assessment.” Engineering Structures, 34(1), 21-32, 2012.
[55] Wilson, T., Mahmoud, H. and Chen, S., “Seismic performance of skewed and curved reinforced concrete bridges in mountainous states.” Engineering Structures, 70(3), 158-167, 2014.
[56] Tondini, N., and Stojadinovic, B., “Probabilistic seismic demand model for curved reinforced concrete bridge.” Bulletin of earthquake engineering, 10(5), 1455-1479, 2012.
[57] Lee, T.Y., Chung, K.J. and Chang, H., “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness, ” International Journal of Structural Stability and Dynamics, 18(3), 1850043, 2018.
[58] Lee, T.Y., Chung, K.J. and Chang, H., “A new implicit dynamic finite element analysis procedure with damping included.” Engineering Structures, 147, 530-544, 2017.
[59] 鍾昆潤,「非耦合隱式動力有限元素分析及其於結構崩塌分析之應用」,國立中央大學土木系博士論文,2018。
[60] Bathe, K. J. and Baig, M. M. I., “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures, 2005.
[61] Bathe, K. J., “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme” Computers and Structures, 2007
[62] Bathe, K. J. and Noh, G. , “Insight into an implicit time integration scheme for structural dynamics” Computers and Structures, 2012
[63] 李姿瑩、盧煉元、陳奕翔、洪文孝,「含變頻式摩擦單擺支承與抗拉拔裝置橋梁之水平雙向振動台實驗」,中華民國力學學會第四十五屆全國力學會議,民國110年11月18-19日,新北市,台灣,2021。
[64] Zayas, V. A., Low, S. S., and Mahin, S. A., “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333, 1990.
[65] Anil K. Chopra, “Dynamics of Structures - Theory and Application to Earthquake Engineering.”4th Edition,Prentice-Hall, 174-180, 2011 .
[66] Przemieniecki, J. S., “Theory of matrix structural analysis”, Dover Publications, Inc. , New York, 2012.
[67] Noh, G., and Bathe, K. J., “Further insights into an implicit time integration scheme for structural dynamics.” Computers & Structures, 202, 15-24, 2018.
[68] 王聖文,「含結構阻尼之三維非線性動力歷時分析」,國立中央大學土木系碩士論文,2020。
[69] Constantinou, M.C., Mokha, A.M. and Reinhorn, A.M., “Teflon bearings in base isolation. Part 2: Modeling,” Journal of Structural Engineering, Vol. 116, No. 2, 455-474, 1990.
[70] Crisfield, M. A. and Moita, F. G., “A co-rotational formulation for 2-D continua including incompatible modes,” International Journal of Numerical Methods in Engineering. 39(15), 2619-2633, 1996.
[71] 王紹柔,「大尺度變曲率滑動隔震支承之理論與實驗研究」,國立成功大學土木系碩士論文,2020。
[72] Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N., “New ground motion selection procedures and selected motions for the PEER transportation research program.” PEER report, 3, 2011.
[73] 李姿瑩、盧煉元、黃麟翔、洪文孝,「應用含抗拉拔裝置變頻式摩擦單擺支承於橋梁之實驗」,中華民國第十五屆結構工程研討會暨第五屆地震工程研討會,民國109年9月2-4日,台南,台灣,2020。
[74] 黃麟翔,「含變頻滑動支承及抗拉拔裝置之不等高橋梁實驗」,國立中央大學土木系碩士論文,2020。
[75] 王亮偉,「變曲率滑動隔震系統於三維震波作用下之實驗與理論研究」,國立成功大學土木系碩士論文,2016。
[76] 廖于婷,「考慮接頭連結效應之非線性構架動力分析」,國立中央大學土木系碩士論文,2022。
[77] 王俊清,「應用多項式摩擦單擺支承於橋梁之性能設計」,國立中央大學土木系碩士論文,2016。
[78] T. Takeda, M. A. Sozen, N. N. Nielsen, “Reinforced Concrete Response to Simulated Earthquakes.” OHBAYASHI-GUMI Technical Research Report No. 5 1971.
[79] PIERINO LESTUZZI, YOUSSEF BELMOUDEN, MARTIN TRUEB, “Non-Linear Seismic Behavior of Structures with Limited Hysteretic Energy Dissipation Capacity.” Bulletin of Earthquake Engineering, 2007.
[80] 湯宇仕,「考量近斷層震波作用下之隔震建物機率式耐震評估法」,國立成功大學土木系碩士論文,2018。
[81] Priestley, M.J.N., Seible, F., and Calvi, G.M. (1996). “Seismic design and retrofit of bridges”. Wiley-Interscience, New York.
[82] Mander, J.B., Priestley, M.J.N., and Park, R. (1988). “Theoretical stress-strain Model for Confined Concrete.” Journal of the Structural Division (ASCE), 114(8), 1804-1826.
[83] Pierino Lestuzzi, Youssef Belmouden, Martin Trueb. (2007) “Non-linear seismic behavior of structures with limited hysteretic energy dissipation capacity”. Bull Earthquake Eng (2007) 5:549–569.
[84] Pedro Folhento, Manuel Braz-César and Rui Barros (2021), “Cyclic response of a reinforced concrete frame: Comparison of experimental results with different hysteretic models”. AIMS Materials Science, 8(6): 917–931.
[85] . 謝瑋桓 “中高樓建築機率式耐震與倒塌風險評估之研究",國立成功大學土木工程學系碩士論文,2017。
[86] FEMA P-58 (2012) “Seismic Performance Assessment of Buildings.” Federal Emergency Management Agency.
[87] FEMA P-58/BD-3.7.8 (2008) “Casualty Consequence Function and Building Population Model Development.” Federal Emergency Management Agency.
[88] Vamvatsikos, D. and Cornell, C. A. (2002) “Incremental dynamic analysis.” Earthquake Engineering and Structural Dynamics, Vol.31, Issue.3, pp. 491-514. 54.
[89] Vamvatsikos, D. and Cornell, C. A. (2006) “Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA.” Earthquake Engineering and Structural Dynamics, Vol.35, Issue.9, pp 1097-1117.
[90] PEER-TBI Task7 (2010) “Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings.” PEER Report No. 2010/111.
[91] FEMA 356 (2000), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings.” Federal Emergency Management Agency.
[92] ASCE 41-13 (2014) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers.
[93] ASCE 7-16 (2016) “Minimum Design Loads for Buildings and Other Structures.” American Society of Civil Engineers.
[94] 盧煉元,王亮偉,陳慶輝,李官峰,李姿瑩,蔡諄昶 (2016)“以性能為導向之二 階段隔震設計法",結構工程,第31卷,第3期,33-61頁。
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明