參考文獻 |
[1] S. S. Dash, A. K. Chandrappa, and U. C. Sahoo, “Design and performance of cold mix asphalt – A review,” Constr. Build. Mater., vol. 315, no. January 2021, p. 125687, 2022, doi: 10.1016/j.conbuildmat.2021.125687.
[2] W. Yang, J. Ouyang, Y. Meng, B. Han, and Y. Sha, “Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents,” Constr. Build. Mater., vol. 297, p. 123699, 2021, doi: 10.1016/j.conbuildmat.2021.123699.
[3] Y. Wang, Z. Leng, X. Li, and C. Hu, “Cold recycling of reclaimed asphalt pavement towards improved engineering performance,” J. Clean. Prod., vol. 171, pp. 1031–1038, 2018, doi: 10.1016/j.jclepro.2017.10.132.
[4] Y. Yang, Y. Yang, and B. Qian, “Performance and microstructure of cold recycled mixes using asphalt emulsion with different contents of cement,” Materials (Basel)., vol. 12, no. 16, 2019, doi: 10.3390/ma12162548.
[5] S. N. A. Aker and H. Ozer, “Cold recycling mix design approach targeting permanent deformation resistance,” Constr. Build. Mater., vol. 400, no. December 2022, p. 132704, 2023, doi: 10.1016/j.conbuildmat.2023.132704.
[6] D. Wang et al., “Compaction Characteristics of Cold Recycled Mixtures with Asphalt Emulsion and Their Influencing Factors,” Front. Mater., vol. 8, no. April, pp. 1–11, 2021, doi: 10.3389/fmats.2021.575802.
[7] N. Tran et al., “Effect of a Recycling Agent on the Performance of High-RAP and High-RAS Mixtures: Field and Lab Experiments,” J. Mater. Civ. Eng., vol. 29, no. 1, pp. 2–9, 2017, doi: 10.1061/(asce)mt.1943-5533.0001697.
[8] J. Zhu, T. Ma, and Z. Fang, “Characterization of agglomeration of reclaimed asphalt pavement for cold recycling,” Constr. Build. Mater., vol. 240, p. 117912, 2020, doi: 10.1016/j.conbuildmat.2019.117912.
[9] S. Du, “Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: 10.1155/2015/271596.
[10] J. M. Terrones-Saeta, F. J. Iglesias-Godino, F. A. Corpas-Iglesias, and C. Martínez-García, “Study of the incorporation of ladle furnace slag in the manufacture of cold in-place recycling with bitumen emulsion,” Materials (Basel)., vol. 13, no. 21, pp. 1–20, 2020, doi: 10.3390/ma13214765.
[11] A. Modarres and P. Ayar, “Comparing the mechanical properties of cold recycled mixture containing coal waste additive and ordinary Portland cement,” Int. J. Pavement Eng., vol. 17, no. 3, pp. 211–224, 2016, doi: 10.1080/10298436.2014.979821.
[12] J. W. Chew, S. Poovaneshvaran, M. R. Mohd Hasan, H. Wang, A. Sani, and B. Golchin, “Serviceability during asphaltic concrete production and leaching concerns of asphalt mixture prepared with recycled paper mill sludge,” Int. J. Pavement Eng., vol. 23, no. 2, pp. 137–147, 2022, doi: 10.1080/10298436.2020.1736291.
[13] “第 02727 章 冷拌再生瀝青混凝土,” vol. 61, no. 1, pp. 1–36, 2021.
[14] “AASHTO MP-31, ‘Standard Specification for Materials for Cold Recycled Mixtures with Emulsified Asphalt,’” vol. 3, no. August, pp. 4–6, 2017.
[15] AASHTO T 283, “Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage,” vol. 2, no. 25 mm, pp. 1–6, 2017.
[16] Z. Al-Hashimi, S. Al-Busaltan, and B. Al-Abbas, “Advancements and Challenges in the Use of Cold Mix Asphalt for Sustainable and Cost-Effective Pavement Solutions,” E3S Web Conf., vol. 427, pp. 1–12, 2023, doi: 10.1051/e3sconf/202342703006.
[17] W. U. Filho, L. M. Gutiérrez Klinsky, R. Motta, and L. L. Bariani Bernucci, “Cold Recycled Asphalt Mixture using 100% RAP with Emulsified Asphalt-Recycling Agent as a New Pavement Base Course,” Adv. Mater. Sci. Eng., vol. 2020, 2020, doi: 10.1155/2020/5863458.
[18] H. K. Shanbara, A. Dulaimi, and T. Al-Mansoori, “Studying the mechanical properties of improved cold emulsified asphalt mixtures containing cement and lime,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012006, 2021, doi: 10.1088/1757-899x/1090/1/012006.
[19] M. Zaumanis, V. Haritonovs, G. Brencis, and J. Smirnovs, “Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia,” pp. 53–59, 2012, doi: 10.2478/v10311-012-0008-8.
[20] H. K. Shanbara et al., “The future of eco-friendly cold mix asphalt,” Renew. Sustain. Energy Rev., vol. 149, no. July 2020, p. 111318, 2021, doi: 10.1016/j.rser.2021.111318.
[21] F. Tang, S. Zhu, G. Xu, T. Ma, L. Kong, and L. Kong, “Influence by chemical constitution of aggregates on demulsification speed of emulsified asphalt based on UV-spectral analysis,” Constr. Build. Mater., vol. 212, pp. 102–108, 2019, doi: 10.1016/j.conbuildmat.2019.03.309.
[22] S. Ignatavicius, A. Kavanagh, M. J. Brennan, D. Colleran, J. Sheahan, and S. Newell, “Experimental investigation of optimum adhesion properties for anionic emulsions in road maintenance applications,” Constr. Build. Mater., vol. 304, no. August, p. 124678, 2021, doi: 10.1016/j.conbuildmat.2021.124678.
[23] A. Al-mohammedawi and K. Mollenhauer, “Current Research and Challenges in Bitumen Emulsion Manufacturing and Its Properties,” Materials (Basel)., vol. 15, pp. 1–29, 2022, doi: 10.3390/ma15062026.
[24] L. Kiihnl and A. F. Braham, “Developing a particle size specification for asphalt emulsion,” Constr. Build. Mater., vol. 293, p. 123414, 2021, doi: 10.1016/j.conbuildmat.2021.123414.
[25] L. Gao, F. Ni, S. Charmot, and H. Luo, “Influence on Compaction of Cold Recycled Mixes with Emulsions Using the Superpave Gyratory Compaction,” J. Mater. Civ. Eng., vol. 26, no. 11, pp. 1–9, 2014, doi: 10.1061/(asce)mt.1943-5533.0000987.
[26] T. Ma, H. Wang, Y. Zhao, X. Huang, and Y. Pi, “Strength Mechanism and Influence Factors for Cold Recycled Asphalt Mixture,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/181853.
[27] S. Chakravarthi, G. Rajkumar, and S. Shankar, “Evaluation of cold emulsified bitumen mixes using recycled con-crete aggregates as a base course,” Rev. la Constr., vol. 22, no. 2, pp. 523–552, 2023, doi: 10.7764/RDLC.22.2.523.
[28] A. Saidi, A. Ali, W. Lein, and Y. Mehta, “A Balanced Mix Design Method for Selecting the Optimum Binder Content of Cold In-Place Recycling Asphalt Mixtures,” Transp. Res. Rec., vol. 2673, no. 3, pp. 526–539, 2019, doi: 10.1177/0361198119835806.
[29] J. Xu, S. Huang, Y. Qin, and F. Li, “The impact of cement contents on the properties of asphalt emulsion stabilized cold recycling mixtures,” Int. J. Pavement Res. Technol., vol. 4, no. 1, pp. 48–55, 2011.
[30] S. M. Saeed et al., “Optimization of rubber seed oil content as bio-oil rejuvenator and total water content for cold recycled asphalt mixtures using response surface methodology,” Case Stud. Constr. Mater., vol. 15, no. March, p. e00561, 2021, doi: 10.1016/j.cscm.2021.e00561.
[31] M. Hugener, M. N. Partl, and M. Morant, “Cold asphalt recycling with 100% reclaimed asphalt pavement and vegetable oil-based rejuvenators,” Road Mater. Pavement Des., vol. 15, no. 2, pp. 239–258, 2014, doi: 10.1080/14680629.2013.860910.
[32] T. S. Naidu, C. M. Sheridan, and L. D. van Dyk, “Basic oxygen furnace slag: Review of current and potential uses,” Miner. Eng., vol. 149, no. August 2019, p. 106234, 2020, doi: 10.1016/j.mineng.2020.106234.
[33] F. Gulisano, G. Flores, and J. Gallego, “Healing response of cold recycled asphalt mixtures with electric arc furnace slag under microwave heating and re-compaction,” Mater. Struct. Constr., vol. 57, no. 4, 2024, doi: 10.1617/s11527-024-02326-w.
[34] Y. Zhao, P. Sun, P. Chen, X. Guan, Y. Wang, and R. Liu, “Component Modification of Basic Oxygen Furnace Slag with C 4 AF as Target Mineral and Application,” Sustainability, vol. 13, pp. 1–9, 2021, doi: 10.3390/su13126536.
[35] C. Fleuriault, J. Grogan, and J. White, “Electric Arc Smelting,” Miner. Met. Mater. Soc., vol. 71, no. 1, pp. 321–322, 2018, doi: 10.1007/s11837-018-3249-6.
[36] M. Manana et al., “Increase of capacity in electric arc-furnace steel mill factories by means of a demand-side management strategy and ampacity techniques,” Int. J. Electr. Power Energy Syst., vol. 124, no. July 2020, p. 106337, 2021, doi: 10.1016/j.ijepes.2020.106337.
[37] J. M. Chimenos, M. Segarra, M. A. Fernández, and F. Espiell, “Characterization of the bottom ash in municipal solid waste incinerator,” J. Hazard. Mater., vol. 64, no. 3, pp. 211–222, 1999, doi: 10.1016/S0304-3894(98)00246-5.
[38] C. J. Lynn, G. S. Ghataora, and R. K. Dhir OBE, “Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements,” Int. J. Pavement Res. Technol., vol. 10, no. 2, pp. 185–201, 2017, doi: 10.1016/j.ijprt.2016.12.003.
[39] R. Carvalho, R. V. Silva, J. de Brito, and M. F. C. Pereira, “Alkali activation of bottom ash from municipal solid waste incineration: Optimization of NaOH- and Na 2SiO3-based activators,” J. Clean. Prod., vol. 291, p. 125930, 2021, doi: 10.1016/j.jclepro.2021.125930.
[40] M. Ameri and A. Behnood, “Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates,” Constr. Build. Mater., vol. 26, no. 1, pp. 475–480, 2012, doi: 10.1016/j.conbuildmat.2011.06.047.
[41] Z. Wang et al., “Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag,” Materials (Basel)., vol. 15, no. 14, pp. 1–18, 2022, doi: 10.3390/ma15145005.
[42] Chen Yuecun, “The performance influence of cold mix recycled asphalt mixture with various cement content and emulsion content in the laboratory,” 2023.
[43] C. Aggregates, F. Aggregate, P. Limit, and S. Precision, “Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports 1,” no. May, pp. 1–3, 2020, doi: 10.1520/D2940.
[44] J. E. S. L. Teixeira, A. G. Schumacher, P. M. Pires, V. T. F. Castelo Branco, and H. B. Martins, “Expansion Level of Steel Slag Aggregate Effects on Both Material Properties and Asphalt Mixture Performance,” Transp. Res. Rec., vol. 2673, no. 3, pp. 506–515, 2019, doi: 10.1177/0361198119835513.
[45] G. Wang, Y. Wang, and Z. Gao, “Use of steel slag as a granular material: Volume expansion prediction and usability criteria,” J. Hazard. Mater., vol. 184, no. 1–3, pp. 555–560, 2010, doi: 10.1016/j.jhazmat.2010.08.071.
[46] D. Deniz, E. Tutumluer, and J. S. Popovics, “Evaluation of expansive characteristics of reclaimed asphalt pavement and virgin aggregate used as base materials,” Transp. Res. Rec., no. 2167, pp. 10–17, 2010, doi: 10.3141/2167-02.
[47] Y. Li, L. Fan, H. Wei, and Y. Zhang, “Performance comparison analysis of cold recycled mixture of emulsified asphalt using 100% rap before and after the adding of cement,” IOP Conf. Ser. Earth Environ. Sci., vol. 300, no. 3, 2019, doi: 10.1088/1755-1315/300/3/032023.
[48] ASTM D6930, “Standard Test Method for Settlement and Storage Stability of Emulsified Asphalts,” pp. 1–3, 2019.
[49] ASTM D6933, “Standard Test Method for Oversized Particles in Emulsified Asphalts (Sieve Test),” pp. 1–2, 2018.
[50] ASTM D6935, “Standard Test Method for Determining Cement Mixing of Emulsified Asphalt,” pp. 1–2, 2011.
[51] ASTM D5, “Standard Test Method for Penetration of Bituminous Materials,” pp. 1–4, 2020.
[52] ASTM D2042, “Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene,” pp. 1–3, 2015, doi: 10.1520/D2042-15.2.
[53] ASTM D6934, “Standard Test Method for Residue by Evaporation of Emulsified Asphalt,” pp. 1–2, 2022.
[54] W. Zhang, M. Zakaria, and Y. Hama, “Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete,” Constr. Build. Mater., vol. 49, pp. 500–510, 2013, doi: 10.1016/j.conbuildmat.2013.08.069.
[55] B. Yang, H. Xu, P. Zhou, and Y. Tan, “Investigation of aggregate moisture content variation and its impact on pavement performance of WMA,” Constr. Build. Mater., vol. 255, p. 119350, 2020, doi: 10.1016/j.conbuildmat.2020.119350.
[56] ASTM C136, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” pp. 1–5, 2019.
[57] ASTM C127, “Standard Test Method for Relative Density ( Specific Gravity ) and Absorption of Coarse,” pp. 1–5, 2015.
[58] ASTM C128, “Standard Test Method for Relative Density ( Specific Gravity ) and Absorption of Fine Aggregate,” pp. 1–6, 2022.
[59] I. H. Mondal, L. Rangan, and R. V. S. Uppaluri, “Heliyon Effect of oven and intermittent air fl ow assisted tray drying methods on nutritional parameters of few leafy and non-leafy vegetables of,” Heliyon, vol. 5, no. January, p. e02934, 2019, doi: 10.1016/j.heliyon.2019.e02934.
[60] O. Y. Shibarshina, D. V Vinogradov, A. S. Stupin, E. V Pimakhina, and A. A. Pimakhin, “Increasing the efficiency of the process of mixing components in the industrial production of dry mixes Increasing the efficiency of the process of mixing components in the industrial production of dry mixes,” J. Phys. Conf. Ser., pp. 1–9, 2022, doi: 10.1088/1742-6596/2373/7/072039.
[61] L. Liu, Z. Han, P. Wu, G. Zheng, and L. Sun, “Study on the Laboratory Mixing and Compaction Methodology of Emulsified Asphalt Cold Recycled Mixture,” Front. Mater., vol. 7, no. October, pp. 1–11, 2020, doi: 10.3389/fmats.2020.00231.
[62] A. Chegenizadeh, A. Tufilli, I. S. Arumdani, M. A. Budihardjo, E. Dadras, and H. Nikraz, “Mechanical Properties of Cold Mix Asphalt ( CMA ) Mixed with Recycled Asphalt Pavement,” infrastructures, vol. 07, pp. 1–14, 2022, doi: https://doi.org/10.3390/ infrastructures7040045.
[63] S. Salih and H. H. Zghair, “Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions,” Tikrit J. Eng. Sci., vol. 21, no. January, pp. 10–18, 2017, [Online]. Available: https://www.researchgate.net/publication/306092093.
[64] S. N. A. Aker and H. Ozer, “Cold recycling mix design approach targeting permanent deformation resistance,” Constr. Build. Mater., vol. 400, no. July, p. 132704, 2023, doi: 10.1016/j.conbuildmat.2023.132704.
[65] Q. Zhang, Z. Fang, Y. Xu, and Z. Ma, “Calculation derivation and test verification of indirect tensile strength of asphalt pavement interlayers at low temperatures,” Materials (Basel)., vol. 14, no. 20, pp. 1–15, 2021, doi: 10.3390/ma14206041.
[66] Z. Liu and L. Sun, “A review of effect of compaction methods on cold recycling asphalt mixtures,” Constr. Build. Mater., vol. 401, no. July, p. 132758, 2023, doi: 10.1016/j.conbuildmat.2023.132758.
[67] L. Guo and D. Q. Wu, “Study of recycling Singapore solid waste as land reclamation filling material,” Sustain. Environ. Res., vol. 27, no. 1, pp. 1–6, 2017, doi: 10.1016/j.serj.2016.10.003.
[68] ASTM D4792, “Standard Test Method for Potential Expansion of Aggregates from Hydration,” vol. 13, no. February, pp. 1–3, 2019.
[69] ASTM D1883, “Standard Test Method for California Bearing Ratio ( CBR ) of Laboratory-Compacted Soils,” pp. 1–16, 2021.
[70] ASTM D698, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” pp. 1–13, 2021.
[71] P. Orosa, P. Ignacio, and A. R. Pasandín, “Case Studies in Construction Materials Evaluation of water loss and stiffness increase in cold recycled mixes during curing,” vol. 18, no. November 2022, 2023, doi: 10.1016/j.cscm.2023.e01877.
[72] S. Du, “Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/271596 Research.
[73] L. Gao, F. Ni, D. Ph, S. Charmot, D. Ph, and H. Luo, “Influence on Compaction of Cold Recycled Mixes with Emulsions Using the Superpave Gyratory Compaction,” pp. 1–9, 1994, doi: 10.1061/(ASCE)MT.1943-5533.0000987.
[74] G. A. F. Cuevas, “Optimization of Cold Mixtures with Emulsion and High RAP Content,” Universidad Politécnica de Madrid, 2019.
[75] G. Flores and J. Gallego, “Influence of the Compaction Method in the Volumetric Design of Cold Recycled Mixtures with Emulsion,” Materials (Basel)., vol. 14, pp. 1–15, 2021, doi: 10.3390/ma14051309.
[76] D. Wang et al., “Compaction Characteristics of Cold Recycled Mixtures with Asphalt Emulsion and Their Influencing Factors,” Front. Mater., vol. 8, no. April, pp. 1–11, 2021, doi: 10.3389/fmats.2021.575802.
[77] M. B. Bouraima and Y. Qiu, “Investigation of influential factors on the tensile strength of cold recycled mixture with bitumen emulsion due to moisture conditioning,” J. Traffic, vol. 4, no. 2, pp. 198–205, 2017, doi: 10.1016/j.jtte.2016.08.005.
[78] M. Jaczewski, “Case Studies in Construction Materials Stiffness of cold-recycled mixtures under variable deformation conditions in the IT-CY test,” Constr. Mater., vol. 18, no. April, 2023, doi: 10.1016/j.cscm.2023.e02066.
[79] C. Sangiovanni, “Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements,” Materials (Basel)., pp. 1–13, 2021, doi: 10.3390/ ma14020345.
[80] M. B. Bouraima and Y. Qiu, “Investigation of influential factors on the tensile strength of cold recycled mixture with bitumen emulsion due to moisture conditioning,” J. Traffic Transp. Eng. (English Ed., no. March, 2017, doi: 10.1016/j.jtte.2016.08.005.
[81] P. Meena, G. Ransinchung, R. Naga, and P. Kumar, “Effect of Mechanical Properties on Performance of Cold Mix Asphalt with Recycled Aggregates Incorporating Filler Additives,” Sustainability, vol. 16, pp. 1–23, 2024, doi: 10.3390/su16010344.
[82] Y. Kim, A. M. Asce, S. Im, S. M. Asce, H. D. Lee, and A. M. Asce, “Impacts of Curing Time and Moisture Content on Engineering Properties of Cold In-Place Recycling Mixtures Using Foamed or Emulsified Asphalt,” Mater. Civ. Eng., no. May, pp. 542–553, 2011, doi: 10.1061/(ASCE)MT.1943-5533.0000209.
[83] Z. Zhao, “Evaluation of Curing Effects on Bitumen Emulsion-Based Cold In-Place Recycling Mixture Considering Field-Water Evaporation and Heat-Transfer Conditions,” Coatings, pp. 1–17, 2023, doi: 10.3390/coatings13071204.
[84] Department of Transportation New York State, Standard Specifications for Portland Cement Concrete (PCC) Production and Placement. 2024.
[85] A. Golalipour, E. Jamshidi, Y. Niazi, and Z. Afsharikia, “Effect of Aggregate Gradation on Rutting of Asphalt Pavements,” Procedia - Soc. Behav. Sci., vol. 53, pp. 440–449, 2012, doi: 10.1016/j.sbspro.2012.09.895.
[86] L. Huang and D. Lin, “Influence of Cooling Efficiency of Basic Oxygen Furnace Slag Used in Recycled Asphalt Mixtures,” Int. J. Pavement Res. Technol., vol. 4, no. 6, pp. 347–355, 2011, doi: 1997-1400.
[87] X. C. Qiao, “Production of lightweight concrete using incinerator bottom ash,” Constr. Build. Mater., vol. 22, pp. 473–480, 2008, doi: 10.1016/j.conbuildmat.2006.11.013. |