博碩士論文 112322082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:168 、訪客IP:18.191.140.36
姓名 翁溫駿(WENG,WEN-JUN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 TAPAS演算法於依時性整合模型之應用
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 運輸需求預測是運輸規劃的核心模組,也是智慧型運輸系統中先進運輸資訊子系統的重要依據。伴隨著科技的進步與演算法效率的提升,運輸需求預測也逐漸從長期性的規劃性質朝向短期性的操作性質發展。為了因應此發展趨勢,運輸需求預測必須克服過去存在的三大課題,即:循序性運輸需求預測程序中界面的不一致性、演算法效率不符合即時性要求、未提供合理的路徑導引資訊。由於運輸需求整合模型可克服介面不一致性、導入時間維度的依時性的模型可呈現精細的運輸需求預測結果、而成對替選區段交通量指派(traffic assignment by paired alternative segments, TAPAS)演算法又具有快速精確的演算效率以及提供合理的唯一路徑解資訊,因此,本論文嘗試將TAPAS演算法應用於依時性單限旅次分佈交通量指派整合模型,依序提出依時性時空路段成本函數、整合模型數學架構、超級路網概念,發展延伸性的交通量指派演算法,然後以雙三角形小路網驗證其正確性。並且通過參數驗證,找出適用於內湖路網的依時性成本函數參數,並提出可能的通用參數a值及β值較大時,較符合路側VD結果。文末並提出研究結論與未來改善建議。
摘要(英) Transportation demand forecasting is a core module in transportation planning and an important basis for advanced transportation information subsystems in intelligent transportation systems. With the advancement of technology and improvement in algorithm efficiency, transportation demand forecasting has gradually evolved from long-term planning to short-term operational applications. To address this development trend, transportation demand forecasting must overcome three major challenges that existed in the past: inconsistency in the interfaces of sequential transportation demand forecasting procedures, algorithm efficiency not meeting real-time requirements, and lack of provision of reasonable path guidance information.

Since the integrated transportation demand model can overcome interface inconsistency, time-dependent models incorporating the time dimension can present detailed transportation demand forecasting results, and the Traffic Assignment by Paired Alternative Segments (TAPAS) algorithm has fast and accurate computational efficiency while providing reasonable unique path solution information, this thesis attempts to apply the TAPAS algorithm to a time-dependent integrated single-constrained trip distribution and traffic assignment model.

The study sequentially proposes a time-dependent spatiotemporal link cost function, the mathematical framework of the integrated model, and the super network concept. It develops an extensible traffic assignment algorithm and then verifies its correctness using a small double-triangle network. Through parameter validation, it identifies suitable time-dependent cost function parameters for the Neihu road network and suggests that when the possible universal parameter a value and β value are larger, the results are more consistent with roadside vehicle detector (VD) data.

The paper concludes with research findings and suggestions for future improvements.
關鍵字(中) ★ 依時性交通量指派
★ MEUE
★ 唯一路徑解流量
★ 超級路網
★ TAPAS演算法
關鍵字(英) ★ time-dependent traffic assignment
★ MEUE
★ unique route flow solution
★ super network
★ TAPAS algorithm
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
一、 緒論 1
二、 文獻回顧 3
2-1 依時性用路人均衡路徑選擇模型 3
2-2 交通量指派演算法 3
三、 依時性用路人均衡路徑選擇模型 6
3-1 依時性單限旅次分布及交通量指派整合模型 6
3-2 依時性用路人均衡模型建構 10
3-2-1 模型建立 10
3-2-2 均衡條件 11
3-3 時空路網 13
3-4 依時性成本函數 14
四、 依時性TAPAS演算法 17
4-1 模型公式 18
4-2 演算法結構 22
4-2-1 架構流程圖 22
4-2-2 巢氏對角法 24
4-3 依時性TAPAS重要模組 26
4-3-1 辨識與建構跨時區PAS 26
4-3-2 流量移轉 27
4-4 靜態交通量指派和依時性交通量指派在演算法上的差別 28
4-4-1 整數化路段成本反覆回跳 28
4-4-2 各模組運算時間 29
4-5 測試範例 30
4-5-1 小路網測試 30
4-5-1 實際路網 33
4-6 參數驗證 36
五、 結論與建議 40
5-1 結論 40
5-2 建議 41
參考文獻 42
參考文獻 1. 薛哲夫(1996)。明確型動態旅運選擇模型之研究。國立中央大學土木工程系,碩士論文,中壢。
2. 張佳偉(1997)。路徑變數產生法求解動態交通量指派模型之效率比較。國立中央大學土木工程系,碩士論文,中壢。
3. 周鄭義(1999)。動態號誌時制最佳化之研究-雙層規劃模型之應用。國立中央大學土木工程系,碩士論文,中壢。
4. 陳惠國(2023a)。改良式需求預測程序及整合模型。運輸規劃-基礎與進階,五南。
5. 陳惠國(2023b)。依時性與非對稱用路人均衡問題。運輸規劃-基礎與進階,五南。
6. 陳惠國(2023c)。網路設計與雙層規劃模型-交通號誌時制設計。運輸規劃-基礎與進階,五南。
7. 顏郁航(2014)。雙限旅次分佈與交通量指派整合問題之研究-延伸性TAPAS演算法之應用。國立中央大學土木工程系,碩士論文,中壢。
8. Bar-Gera, H., & Boyce, D. (1999). Route flow entropy maximization in origin-based traffic assignment. In 14th International Symposium on Transportation and Traffic Theory Transportation Research Institute.
9. Bar-Gera, H. (2002). Origin-based algorithm for the traffic assignment problem. Transportation Science, 36(4), 398-417.
10. Bar-Gera, H. (2006). Primal method for determining the most likely route flows in large road networks. Transportation Science, 40(3), 269-286.
11. Bar-Gera, H. (2010). Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological, 44(8-9), 1022-1046.
12. Beckmann, M., McGuire, C. B., & Winsten, C. B. (1956). Studies in the Economics of Transportation, 226, Yale University Press.
13. Chen, H. K., & Hsueh C.F. (1996). A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation, Proceedings of the 5th World Congress of the RSAI Conference, Japan.
14. Chen, H. K., & Hsueh, C. F. (1998). A model and an algorithm for the dynamic user-optimal route choice problem. Transportation Research Part B: Methodological, 32(3), 219-234.
15. Chen, H. K. (1999). Dynamic Travel Choice Models : A Variational Inequality Approach, Springer-Verlag, Springer-Verlag, Berlin .
16. Chen, H. K. (2011). Supernetworks for combined travel choice models. The Open Transportation Journal, 5(1).
17. Chen H. K. (2017). A heuristic for the doubly constrained entropy distribution/ assignment problem, Netw Spat Econ, 17, 107–128.
18. Dial, R. B. (2006). A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration. Transportation Research Part B: Methodological, 40(10), 917-936.
19. Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2), 95-110.
20. Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., & Wie, B. W. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operations research, 41(1), 179-191.
21. Jayakrishnan, R., Tsai, W. T., Prashker, J. N., & Rajadhyaksha, S. (1994). A faster path-based algorithm for traffic assignment. UC Berkeley: University of California Transportation Center.
22. Jie, Y. (2015). Understanding the unique route flow solution of traffic assignment modeling with entropy assumption. Master′s Thesis, National Central University, Taiwan.
23. Ran, B., Hall, R. W., & Boyce, D. E. (1996). A link-based variational inequality model for dynamic departure time/route choice. Transportation Research Part B: Methodological, 30(1), 31-46.
24. Rossi, T. F., McNeil, S., & Hendrickson, C. (1989). Entropy model for consistent impact-fee assessment. Journal of urban planning and development, 115(2), 51-63.
25. Smith, M. J. (1993). A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity- constrained road networks. Transportation Research, 27(1), 49-63.
26. Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria. Transportation Research Part B: Methodological, 13(4), 295-304.
27. Xie, J., & Xie, C. (2014). An improved TAPAS algorithm for the traffic assignment problem. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2336-2341.
28. Yen, C. (2022). Adaptive Time-Dependent Traffic Signal Control Scheme with Variable Cycle Length Based on Signaling data. Master′s Thesis, National Central University, Taiwan.
指導教授 陳惠國 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明