摘要(英) |
Abstract
Passenger volume prediction in urban transportation management is crucial, particularly origin-destination (OD) prediction, which helps understand passenger movement patterns and efficiently schedule train operations and vehicle allocation. Traditional methods often fail to handle holidays, special events, or unexpected incidents, resulting in low prediction accuracy. To address this, we propose a neural network prediction model that combines activity labels with historical time-series OD data, improving prediction accuracy during special events.Our model, constructed using the nn.Module in PyTorch, takes inputs such as time periods, entry and exit stations, passenger counts, workdays or holidays, anomaly event markers, activity types, and travel times between OD points. The output is the exit proportion at each station. Given that the OD proportion is a probability distribution, we use the cross-entropy loss function to enhance the model′s accuracy in predicting OD distributions for metro stations. For the learning rate algorithm, we switch from Adam to SGD and manually adjust the learning rate to avoid extreme values in the model output, significantly improving the model′s adaptability to high-dimensional data. Additionally, we propose predictive scheduling and enhanced service recommendations for the Taipei Metro, including preemptively adjusting train intervals, real-time updates of passenger flow information, and developing event cooperation strategies to boost overall operational efficiency and passenger satisfaction. Ultimately, we use ticket OD data to calculate inter-station volume. |
參考文獻 |
參考文獻
[1] 林子鈞,2020,以深度學習方法預測大型活動對臺北捷運運量之影響,國立臺灣大學地理環境資源學系,碩士論文,臺北市
[2] 翁宇鴻,2022,應用手機信令預測捷運站間量之研究,國立中央大學土木工程學系,碩士論文,桃園市。
[3] 陳惠國,2022,研究分析方法講義,國立中央大學土木工程學系,桃園市。
[4] Liu, L., Zhu, Y., Li, G., Wu, Z., Bai, L., and Lin, L., 2022, Online metro origin-destination prediction via heterogeneous information aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), 3574-3589.
[5] Vanajakshi, L., and Laurence R., 2007, Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium, 600-605.
[6] Jeong, Y. S., Byon, Y. J., Manoel C. N., and Easa., 2013, Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems , 1700-1707.
[7] Jiber, M., Lamouik, I., Ali, Y., and Sabri, M. A., 2018, Traffic flow prediction using neural network. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) 1-4.
[8] Gallo, M., De Luca, G., D’Acierno, L., and Botte, M., 2019, Artificial neural networks for forecasting passenger flows on metro lines. Sensors, 19(15), 3424.
[9] Kusonkhum, W., Srinavin, K., Leungbootnak, N., and Chaitongrat, T., 2022, Using a Machine Learning Approach to Predict the Thailand Underground Train’s Passenger. Journal of Advanced Transportation.
[10] Hou, Y., and Edara, P., 2018, Network scale travel time prediction using deep learning. Transportation Research Record, 2672(45), 115-123.
[11] Jia, Y., Wu, J.,and Xu, M., 2017.,Traffic flow prediction with rainfall impact using a deep learning method. Journal of Advanced Transportation 2017(722), 1-10
[12] Liu, L., and Chen, R. C., 2017, A MRT daily passenger flow prediction model with different combinations of influential factors. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA) 601-605.
[13] Shiao, Y. C., Liu, L., Zhao, Q., and Chen, R. C., 2017, Predicting passenger flow using different influence factors for Taipei MRT system. In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST) , 447-451.
[14] Wu, J., and Liao, H., 2020, Weather, travel mode choice, and impacts on subway ridership in Beijing. Transportation research part A: policy and practice, 135, 264-279.
[15] Verma, T., Sirenko, M., Kornecki, I., Cunningham, S., & Araújo, N. A. , 2021, Extracting spatiotemporal commuting patterns from public transit data. Journal of Urban Mobility, 1, 100004.
[16] Mondal, M. A., and Rehena, Z., 2020, Road traffic outlier detection technique based on linear regression. Procedia Computer Science, 171, 2547-2555.
[17] Kim, S., Shibuya, T., Toride, S., and Endo, Y., 2022, A Human-Flow Analysis Based on PCA: A Case Study on Population Data Near Railway. In 2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI).
[18] Reddi, S. J., Kale, S., and Kumar, S., 2019, On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237. |