摘要(英) |
In the fields of geology and geotechnical engineering, the study of faults and tunnels is
important. Particularly in seismically active regions, the presence of fault zones and fractured
geological formations introduces significant uncertainties in tunnel design and construction,
potentially posing serious threats to tunnel stability and safety. The inherent difficulty in
directly observing in situ soil layers and faults, compounded by the limited availability of data,
complicates the analytical process. To simulate various failure mechanisms, civil engineers
often simplify these complex problems and construct numerical or physical models. However,
the preparation of full-scale physical models is time-consuming and economically inefficient,
while numerical simulations require extensive preliminary work based on field investigations
or simplified physical model experiments. Additionally, the experimental process for centrifuge
models is also time-intensive, and the availability of research facilities equipped with
centrifuges is relatively limited.
To address these challenges, this study utilizes 1g fault experiments to simulate the
interaction between faults and tunnels, aiming to understand the impact of faults on tunnel
stability. The results are compared with centrifuge modeling tests to explore the correlation
between the two, thereby assessing the reliability of 1g fault experiments. The research focuses
on observing the interaction between shear zones and tunnels during reverse fault movements,
documenting the extent of the shear zones, tunnel inclination, tunnel displacement, and surface
impact area. This study seeks to provide a more straightforward yet accurate method for
investigating the interaction between faults and tunnels, offering valuable insights for
geological hazard assessment and infrastructure design in practical engineering.
This research, based on centrifuge modeling tests and large-scale 1g fault experiments,
explores the behavior of tunnels at different burial depths in terms of displacement, inclination,
and surface impact area. The study finds that when the burial depth is twice the tunnel height,
the horizontal and vertical displacement results from large-scale 1g fault experiments
overestimate by approximately 20% and 24%, respectively, while the tunnel inclination and
surface impact area are underestimated by 27% and 38%, respectively. Due to the closer
approximation of fault slip rates to real-world conditions in large-scale 1g fault experiments,
the behavior of shear zone development is more representative of actual scenarios. In contrast,
the stress environment in centrifuge model tests is more analogous to real-world conditions,
making the tunnel′s stress behavior, displacement, and inclination more similar to those in
actual situations. Therefore, both testing methods have their respective strengths and
iii
weaknesses when evaluating the behavior of tunnels affected by faults. Furthermore, reducing
the burial depth of tunnels leads to increased displacement and inclination, as well as an
expanded shear zone and surface impact area, necessitating a more conservative approach to
the placement of shallow-buried tunnels. |
參考文獻 |
[1] 交通技術標準規範鐵路類工務部,鐵路明挖覆蓋隧道設計規範,交通技術標準規範
鐵路類工務部(2016)。
[2] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第 30 卷,第 4 期,第 89-
92 頁(2003)。
[3] 張徽正、林啟文、陳勉銘、盧詩丁,「臺灣活動斷層分布圖說明書」,經濟部中央地
質調查所特刊,第 10 號(1998)。
[4] 邱亦維、藺于鈞、黃文正、顏一勤、波玫琳、李元希,「臺灣臺灣西南部中寮隧道北
端口旗山斷層帶構造特性研究」,經濟部中央地質調查所特刊,第 34 號,第 83-100
頁(2019)。
[5] 林啟文、劉彥求、周稟珊、林燕慧,「臺灣活動斷層調查的近期發展」,經濟部中央
地質調查所彙刊,第 34 號,第 1-40 頁(2021)。
[6] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央
地質調查所報告,第 9 號,臺北,臺灣(2011)。
[7] 林士誠,「標準貫入試驗 N 值應用之彙整(二)」,技師報,第 655 號(2009)。
[8] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧,「以離心模型試驗探
討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第 28 號,
第 129-151 頁(2014)。
[9] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第 15 期,
第 14-25 頁(2017)。
[10] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,
98
博士論文,國立中央大學土木工程學系,桃園,臺灣(2013)。
[11] 陳柏翰,「礫石受剪之音波與振波特性」,碩士論文,國立中央大學土木工程學系,
桃園,臺灣(2013)。
[12] 廖奕昜,「以離心模型試驗模擬逆斷層錯動近地表變形特性」,碩士論文,國立中央
大學土木工程學系,桃園,臺灣(2013)。
[13] 張庭傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩
士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[14] 鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,博士論文,
國立臺灣大學土木工程學系,臺北,臺灣(2007)。
[15] 洪千惠,「礫石層組構特性對逆斷層引致復合地層變形之影響」,國立臺灣大學土木
工程學系,臺北,臺灣(2020)。
[16] 鍾承哲,「斷層錯動引致地表構造物與管線位移之模擬」,碩士論文,國立中央大學
土木工程學系,桃園,臺灣(2021)。
[17] 彭昱熙,「斜移斷層錯動引致上覆土層內結構物變形之研究」,碩士論文,國立臺灣
大學土木工程學系,臺北,臺灣(2022)。
[18] Ahmadi, M., Moosavi, M., Jafari, M. K., “Experimental investigation of reverse fault
rupture propagation through wet granular soil,” Engineering Geology, Vol. 239, pp. 229-
240, 2018
[19] Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B., “Earthquake fault rupture
propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.543–
561, 1994
[20] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault rupture propagation
99
through cohesive soil, ” Journal of Geotechnical Engineering, Vol. 120, No 3., pp. 562-
580, 1994
[21] Baziar, M. H., Nabizadeh, A., Lee, C. J., Hung, W. Y., “Centrifuge modeling of interaction
between reverse faultingand tunnel,” Soil Dynamics and Earthquake Engineering, pp.
151-164, 2014
[22] Cole, D. A., Jr., and Lade, P. V., “Influence zones in alluvium over dip-slip faults, ” Journal
of Geotechnical Engineering, Vol. 110, pp. 599-615, 1984
[23] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C.,
Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the
1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth
Sciences, Vol 31, pp. 204-213, 2007
[24] Coletta, M., De Gregorio, F., Visingardi, A., Iuso, G., “PIV data: Vortex Detection and
Characterization,” 13th International Symposium on Particle Image Velocimetry, 2019
[25] Fossen, H., Cavalcante, G. C. G., “Shear zones – A review,” Earth-Science Reviews, Vol.
171, pp. 434-455, 2017
[26] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles
of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake:
Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the
Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[27] Kelson, K. I., Harder, L. F., Kishida, T., Ryder, I., “Preliminary Observations of Surface
Fault Rupture from the April 11, 2011 Mw6.6 Hamadoori Earthquake, Japan,”
Geotechnical Extreme Events Reconnaissance, No. GEER-025D (2011).
[28] Lee, J. W., Hamada, M., Tabuchi, G., Suzuki, K., “Prediction of fault rupture propagation
based on physical model test in sandy soil deposit,” 13th World Conference on Earthquake
Engineering, B.C., Canada, Paper No. 119, 2004
100
[29] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of
coseismic deformation along the northern segment of surface rupture, of the 2008
Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[30] Lin, M. L., Chung C. F., and Jeng F. S., “Deformation of overburden soil induced by thrust
fault slip,” Engineering Geology, Vol. 88, pp. 70-89(2006)
[31] Roth, W. H., Scott, R. F. and Austin, I., “Centrifuge modeling of fault propagation through
alluvial soils,” Geophysical Research Letters, Vol. 8, No. 6, pp. 561-564, 1981
[32] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in
Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central
University, Taoyuan, Taiwan (2020). |