博碩士論文 110322099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.15.17.25
姓名 吳玟芯(Wen-Sin Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 修正潮汐分布之光學衛星反演潮間帶地形: 以外傘頂洲為例
(Optical Satellite-Based Intertidal Topography with Tidal Distribution Correction: A Case of the Waisanding Tidal Flat)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形★ 利用衛星影像間接建立全台海岸地形模型
★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
★ 以自相似算法進行衛星影像融合和水線判釋★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測
★ 利用衛星遙測資訊於稻米產量預測★ 利用ICESat-2及Sentinel-2反演南海近岸水深
★ 利用行動測深系統產製淺水區深度模型★ 以多元衛星影像監測青藏高原湖泊長期水量變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 沿岸地區被視為經濟及人文發展的重要地區,對於漁業、交通及觀光等發展都是相當重要的。此外,在生態方面沿岸的潮間帶地區更能用於調節氣候、過濾水質以及防止洪患等。然而,沿岸潮間帶地區具有易受到海水侵蝕及河川淤泥堆積的特性,地形變化快速,若能發展可以長期快速且大面積的監測方法,便能當作未來用來規劃發展該區域的重要資料來源。
本研究的研究區域為臺灣沿岸最大的沿岸沙洲-外傘頂洲,使用衛星影像來建置潮間帶的地形可達到快速且大範圍的要求。本研究使用Sentinel-2、Landsat 7/8自2014年至2017年的光學衛星影像,並計算每張影像的(改良的)常態差異水體指標,使用隨影像灰值分布不同而設定的閾值來辨識水體及陸域,再使用時間區間內的多張判識好水體的影像建置淹水機率圖。而後改善因為影像對應的潮汐高度採樣不均勻所造成的誤差,提出了Sampling Errors Reduction (SER)方法,使用DTU16全球海洋潮汐模型模擬每張影像對應的潮汐高度,並加以分析其分布情形後對淹水機率圖逐像素改進,再使用影像對應最高及最低潮汐高度對改善後淹水機率圖依比例賦予高程,最後潮間帶的數值高程模型即為高程位於平均較高高潮及平均較低低潮之間的區域。
本研究的結果與由單音束聲納所採集到的地形資料做驗證,我們所提出的方法建置的潮間帶數值高程模型,RMSD可以達到28.8公分的精度,經過SER方法有6.2%的改善幅度,且在影像張數越多的情況下可以有更好的精度及改善幅度,但改善幅度會受到影像對應的潮汐分布所影響
摘要(英) Coastal zones serving as economic and cultural hubs, prominently feature activities such as fisheries, transportation, and tourism, underscoring their significance. Furthermore, ecologically, coastal intertidal zones play crucial roles in climate regulation, water filtration, and flood prevention. However, the coastal areas are easily affected by erosion and sediment deposition, coupled with the rapid morphological changes in intertidal zones, emphasizing the need to develop long-term, rapid, and large-scale monitoring methods. Such methods could serve as essential data sources for future planning and development of these regions.
The study area of this study is on the largest tidal flat along the coast of Taiwan, the Waisanding Tidal Flat. Traditionally, the topography of this shallow shoal has been surveyed using methods such as Single Beam Echo Sounder (SBES), airborne Light Detection and Ranging (LiDAR), or stereoscopic imagery captured by unmanned aerial vehicles. However, these methods are often time-consuming and resource-intensive.
Utilizing satellite imagery offers a solution to meet the requirements of rapid and large-scale terrain reconstruction in intertidal zones. Past studies have employed radar and optical imagery or both to enhance temporal resolution. This study adopts a methodology for automatic tidal flat reconstruction. It utilizes optical satellite imagery from Sentinel-2, Landsat 7/8, from 2014 to 2017. The (Modified) Normalized Difference Water Index ((M)NDWI) is calculated for each image, employing thresholding based on variations in pixel intensity to delineate water and land. Subsequently, multiple images within a time interval are used to construct flood probability maps. The study then focuses on addressing errors caused by uneven sampling of tide heights corresponding to the images by proposing the Sampling Errors Reduction (SER) method. This method incorporates tide heights simulated by the DTU16 global ocean tide model for each image, analyzing their distribution, and iteratively improves flood probability maps at a pixel level. Finally, elevation values in the intertidal zone are assigned proportionally based on the highest and lowest tide heights corresponding to the images, resulting in an intertidal Digital Elevation Model (DEM) situated between Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW).
Comparing the results with DEM collected from the SBES, the DEM of the intertidal zone constructed using the proposed method achieves a Root Mean Square Difference (RMSD) of 28.8 cm, with a 6.2% improvement through the SER method. Furthermore, higher accuracy and improvement rates are observed with more images, although the improvement rate is influenced by the distribution of tide heights corresponding to the images.
關鍵字(中) ★ Landsat 7/8
★ Sentinel-2
★ 光學衛星影像
★ 數值高程模型
★ 潮汐模型
關鍵字(英) ★ Landsat 7/8
★ Sentinel-2
★ Optical satellite imagery
★ DEM
★ Tide model
論文目次 Table of Contents
摘 要 I
Abstract III
Chapter 1 Introduction 1
1-1 Research Background 1
1-2 Objective 4
1-3 Architecture 5
Chapter 2 Related Studies 7
2-1 Coastal Monitoring Methods 7
2-2 Satellite Imagery in Intertidal Areas 8
Chapter 3 Study Area and Dataset 11
3-1 Study Area 11
3-1-1 Taiwan’s Coastal Zone 11
3-1-2 Waisanding Tidal Flat 12
3-2 Dataset 14
3-2-1 Sentinel-2 14
3-2-2 Landsat Series 16
3-2-3 DTU16 Global Ocean Tide Model 18
3-2-4 Ground Observed Data 19
Chapter 4 Methodology 20
4-1 Workflow 20
4-2 Optical Imagery Preprocessing 22
4-3 Cloudy Images filtering 23
4-4 Classification and Mapping the Frequency of Inundation Map 24
4-5 Sampling Errors Reduction (SER) 27
4-5-1 Sampling Errors 27
4-5-2 Correction 30
4-6 Leveling with DTU16 33
4-7 Defining the Intertidal Zone 34
Chapter 5 Results 35
5-1 The Intertidal DEM of Waisanding Tidal Flat 35
5-2 Constructed DEM Comparing with the Ground Observed Data 37
5-3 Temporal changes in the morphology of Waisanding Tidal Flat 42
5-4 Verification of the SER Method Using Numerous Simulations 44
5-4-1 Simulation of Using the Images with Extremely Uneven Distribution Tide Height 44
5-4-2 Simulated Tide Height Distribution is the Same as the 61 Images Used in this Study 46
5-5 The DEM Constructed with Different Numbers of Image 48
5-6 Constructing Topography Using Images from Individual Satellite Missions 50
Chapter 6 Discussions 56
6-1 Time Period of the Used Images 56
6-2 Limitations on the Intertidal Zone Range 56
6-3 Impact of Clouds on Water Body Detection Results 57
6-4 Tide Heights Distribution 59
Chapter 7 Conclusions 62
Chapter 8 Future Work 64
8-1 Intermission Bias 64
8-2 Landsat TOA Product 65
References 66
參考文獻 References
Almeida, L. P., Almar, R., Bergsma, E. W., Berthier, E., Baptista, P., Garel, E., Dada, O. A., & Alves, B. (2019). Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery. Remote Sensing, 11(5), 590.
Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual review of earth and planetary sciences, 28(1), 169-209.
Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., Andersen, O., Birol, F., Bonnefond, P., & Bouffard, J. (2019). Requirements for a coastal hazards observing system. Frontiers in Marine Science, 6, 348.
Burkett, V., & Davidson, M. (2012). Coastal impacts, adaptation, and vulnerabilities. Springer.
Camfield, F. E., & Holmes, C. M. (1995). Monitoring completed coastal projects. Journal of performance of constructed facilities, 9(3), 161-171.
Carnes, M. R. (2009). Description and Evaluation of GDEM-V 3.0. Naval Research Laboratory, 1-24.
Chang, H., Lai, Y., & Chen, W. (2017). Shoreline evolution of the Waisanding barrier using waterline detection from satellite images. J. Photogramm. Remote Sens, 22, 243-262.
Chang, Y., Chu, K.-w., & Chuang, L. Z.-H. (2018). Sustainable coastal zone planning based on historical coastline changes: A model from case study in Tainan, Taiwan. Landscape and urban planning, 174, 24-32.
Chen, W.-W., & Chang, H.-K. (2009). Estimation of shoreline position and change from satellite images considering tidal variation. Estuarine, Coastal and Shelf Science, 84(1), 54-60.
Cheng, Y., & Andersen, O. B. (2011). Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11).
Cheng, Y., & Andersen, O. B. (2017). Towards further improving DTU global ocean tide model in shallow waters and Polar Seas. OSTST, Poster in: Proceedings of the Ocean Surface Topography Science Team (OSTST) Meeting, Miami, FL, USA,
Choi, C., & Kim, D.-j. (2018). Optimum baseline of a single-pass In-SAR system to generate the best DEM in tidal flats. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 919-929.
CIESIN, C. (2005). Gridded Population of the World Version 3 (GPWv3). Center for International Earth Science Information Network and Centro Internacional de Agricultura Tropical. Socioeconomic Data and Applications Center (SEDAC).
Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97.
Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010) (2331-1258).
Ding, X., Nunziata, F., Li, X., & Migliaccio, M. (2015). Performance analysis and validation of waterline extraction approaches using single-and dual-polarimetric SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1019-1027.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., & Martimort, P. (2012). Sentinel-2: ESA′s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36.
Eakins, B. W., & Grothe, P. R. (2014). Challenges in building coastal digital elevation models. Journal of Coastal Research, 30(5), 942-953.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., & Roth, L. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2).
Fassoni‐Andrade, A. C., De Paiva, R. C. D., & Fleischmann, A. S. (2020). Lake topography and active storage from satellite observations of flood frequency. Water Resources Research, 56(7), e2019WR026362.
Focardi, S., & Pepi, M. (2023). Coastal Monitoring and Coastal Erosion: Engineering Interventions for Coastal Protection and Considerations on the Mediterranean Sea.
Gao, X., Wei, Z., Lv, X., Wang, Y., & Yang, Y. (2014). Accuracy assessment of global ocean tide models in the South China Sea. Adv Mar Sci, 32, 1-14.
Gill, S. K., & Schultz, J. R. (2001). Tidal datums and their applications.
Gleyzes, J.-P., Meygret, A., Fratter, C., Panem, C., Baillarin, S., & Valorge, C. (2003). SPOT5: system overview and image ground segment. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477),
Goncalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
Guo, Q., Pu, R., Li, J., & Cheng, J. (2017). A weighted normalized difference water index for water extraction using Landsat imagery. International Journal of Remote Sensing, 38(19), 5430-5445.
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747-1755.
Hammerstad, E., Pohner, F., Parthiot, F., & Bennett, J. (1991). Field testing of a new deep water multibeam echo sounder. OCEANS 91 Proceedings,
Heege, T., Bergin, M., Hartmann, K., & Schenk, K. (2016). Satellite services for coastal applications. Ocean Solutions, Earth Solutions, 2016357-2016368.
Heygster, G., Dannenberg, J., & Notholt, J. (2009). Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1019-1030.
Hu, J., Kawamura, H., Li, C., Hong, H., & Jiang, Y. (2010). Review on current and seawater volume transport through the Taiwan Strait. Journal of oceanography, 66, 591-610.
Hwung, H.-H., Tsai, C., & Wu, C. (1986). Studies on the correlation of tidal elevation changes along the western coastline of Taiwan. In Coastal Engineering 1986 (pp. 293-305).
Janowski, L., Trzcinska, K., Tegowski, J., Kruss, A., Rucinska-Zjadacz, M., & Pocwiardowski, P. (2018). Nearshore benthic habitat mapping based on multi-frequency, multibeam echosounder data using a combined object-based approach: A case study from the Rowy site in the southern Baltic sea. Remote Sensing, 10(12), 1983.
Just, D., & Bamler, R. (1994). Phase statistics of interferograms with applications to synthetic aperture radar. Applied optics, 33(20), 4361-4368.
Kaichang, D., Ruijin, M., & Rongxing, L. (2003). Geometric processing of Ikonos stereo imagery for coastal mapping applications. Photogrammetric Engineering & Remote Sensing, 69(8), 873-879.
Kang, Y., Ding, X., Xu, F., Zhang, C., & Ge, X. (2017). Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuarine, Coastal and Shelf Science, 190, 11-22.
Khalid, N., Din, A., Omar, K., Khanan, M., Omar, A., Hamid, A., & Pa’Suya, M. (2016). Open-source digital elevation model (DEMs) evaluation with GPS and LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 299-306.
Kim, D.-j., Moon, W. M., Park, S.-E., Kim, J.-E., & Lee, H.-S. (2007). Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas. IEEE Geoscience and Remote Sensing Letters, 4(2), 269-273.
Klemas, V. (2011). Beach profiling and LIDAR bathymetry: An overview with case studies. Journal of Coastal Research, 27(6), 1019-1028.
Klemas, V. V. (2009). The role of remote sensing in predicting and determining coastal storm impacts. Journal of Coastal Research, 25(6), 1264-1275.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., & Zink, M. (2007). TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3317-3341.
Kulp, S. A., & Strauss, B. H. (2018). CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sensing of Environment, 206, 231-239.
Launeau, P., Giraud, M., Robin, M., & Baltzer, A. (2019). Full-waveform LIDAR fast analysis of a moderately turbid bay in Western France. Remote Sensing, 11(2), 117.
Lee, S.-K., & Ryu, J.-H. (2017). High-accuracy tidal flat digital elevation model construction using TanDEM-X science phase data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 2713-2724.
Li, F. K., & Goldstein, R. M. (1990). Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Transactions on Geoscience and Remote Sensing, 28(1), 88-97.
Li, R., Di, K., & Ma, R. (2003). 3-D shoreline extraction from IKONOS satellite imagery. Marine Geodesy, 26(1-2), 107-115.
Li, Z., Heygster, G., & Notholt, J. (2014). Intertidal topographic maps and morphological changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the waterline method and SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3210-3224.
Li, Z., Shen, H., Weng, Q., Zhang, Y., Dou, P., & Zhang, L. (2022). Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 89-108.
Lin, J.-c. (1996). Coastal modification due to human influence in south-western Taiwan. Quaternary Science Reviews, 15(8-9), 895-900.
Liu, Z., Yao, Z., & Wang, R. (2016). Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environmental Earth Sciences, 75, 1-13.
Madricardo, F., Foglini, F., Kruss, A., Ferrarin, C., Pizzeghello, N. M., Murri, C., Rossi, M., Bajo, M., Bellafiore, D., & Campiani, E. (2017). High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon. Scientific data, 4(1), 1-14.
Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898.
Mason, D., Davenport, I., Flather, R., Gurney, C., Robinson, G., & Smith, J. (2001). A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of eastern England. Estuarine, Coastal and Shelf Science, 53(6), 759-778.
Mason, D., Davenport, I., Robinson, G., Flather, R., & McCartney, B. (1995). Construction of an inter‐tidal digital elevation model by the ‘Water‐Line’Method. Geophysical Research Letters, 22(23), 3187-3190.
Mason, D., Gurney, C., & Kennett, M. (2000). Beach topography mapping—a comparsion of techniques. Journal of Coastal Conservation, 6, 113-124.
Matthews, J. (2005). Stereo observation of lakes and coastal zones using ASTER imagery. Remote Sensing of Environment, 99(1-2), 16-30.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
Mielck, F., Hass, H. C., & Betzler, C. (2014). High-resolution hydroacoustic seafloor classification of sandy environments in the German Wadden Sea. Journal of Coastal Research, 30(6), 1107-1117.
Ministry of the Interior, R. o. C. (2001). List of proportions of natural and artificial coastlines in each county and city in the second issue of 2001.
Ministry of the Interior, R. o. C. (2022). 2022 Statistical Yearbook of Interior. https://www.moi.gov.tw/cl.aspx?n=4406
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine, 1(1), 6-43.
Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217.
Nelson, A., Reuter, H., & Gessler, P. (2009). Chapter 3 DEM Production Methods and Sources. 65-85. In: Elsevier.
Niethammer, U., James, M., Rothmund, S., Travelletti, J., & Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
Obu, J., Lantuit, H., Grosse, G., Günther, F., Sachs, T., Helm, V., & Fritz, M. (2017). Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology, 293, 331-346.
Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285-296), 23-27.
Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., & Seitz, F. (2021). Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry. Advances in Space Research, 68(2), 1013-1022.
Porskamp, P., Rattray, A., Young, M., & Ierodiaconou, D. (2018). Multiscale and hierarchical classification for benthic habitat mapping. Geosciences, 8(4), 119.
Reif, M. K., Wozencraft, J. M., Dunkin, L. M., Sylvester, C. S., & Macon, C. L. (2013). A review of US Army Corps of Engineers airborne coastal mapping in the Great Lakes. Journal of Great Lakes Research, 39, 194-204.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382.
Roznere, M., & Li, A. Q. (2020). Underwater monocular image depth estimation using single-beam echosounder. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Ryu, J.-H., Kim, C.-H., Lee, Y.-K., Won, J.-S., Chun, S.-S., & Lee, S. (2008). Detecting the intertidal morphologic change using satellite data. Estuarine, Coastal and Shelf Science, 78(4), 623-632.
Ryu, J.-H., & Won, J.-S. (2002). Application of neural networks to waterline extraction in tidal flat from optic satellite images. IEEE International Geoscience and Remote Sensing Symposium,
Salameh, E., Frappart, F., Almar, R., Baptista, P., Heygster, G., Lubac, B., Raucoules, D., Almeida, L. P., Bergsma, E. W., & Capo, S. (2019). Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: A review. Remote Sensing, 11(19), 2212.
Salameh, E., Frappart, F., Marieu, V., Spodar, A., Parisot, J.-P., Hanquiez, V., Turki, I., & Laignel, B. (2018). Monitoring sea level and topography of coastal lagoons using satellite radar altimetry: The example of the Arcachon Bay in the Bay of Biscay. Remote Sensing, 10(2), 297.
Salameh, E., Frappart, F., Turki, I., & Laignel, B. (2020). Intertidal topography mapping using the waterline method from Sentinel-1 &-2 images: The examples of Arcachon and Veys Bays in France. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 98-120.
Sekon, J. H., Majid, Z., & Ariff, M. F. M. (2023). LIDAR For Coastal Monitoring Study–A Review. 2023 IEEE 14th Control and System Graduate Research Colloquium (ICSGRC),
Simons, M., & Rosen, P. (2007). 3.12—interferometric synthetic aperture radar geodesy a2—Schubert, Gerald. Treatise on geophysics. In: Elsevier Amsterdam.
Syvitski, J. P., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 957-975.
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z., Danielson, J. J., Krieger, T., Curtis, B., & Haase, J. (2011). ASTER global digital elevation model version 2-summary of validation results.
Tadono, T., Takaku, J., Tsutsui, K., Oda, F., & Nagai, H. (2015). Status of “ALOS World 3D (AW3D)” global DSM generation. 2015 IEEE international geoscience and remote sensing symposium (IGARSS),
Tamura, T., Oliver, T., Cunningham, A. C., & Woodroffe, C. D. (2019). Recurrence of extreme coastal erosion in SE Australia beyond historical timescales inferred from beach ridge morphostratigraphy. Geophysical Research Letters, 46(9), 4705-4714.
Tsai, Y.-L. S., & Tseng, K.-H. (2023). Monitoring multidecadal coastline change and reconstructing tidal flat topography. International Journal of Applied Earth Observation and Geoinformation, 118, 103260.
Tseng, K.-H., Kuo, C.-Y., Lin, T.-H., Huang, Z.-C., Lin, Y.-C., Liao, W.-H., & Chen, C.-F. (2017). Reconstruction of time-varying tidal flat topography using optical remote sensing imageries. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 92-103.
Turner, J., Iliffe, J., Ziebart, M., & Jones, C. (2013). Global ocean tide models: assessment and use within a surface model of lowest astronomical tide. Marine Geodesy, 36(2), 123-137.
Won, J.-S., & Kim, S.-W. (2003). ERS SAR interferometry for tidal flat DEM. Proc. of FRINGE 2003 Workshop, Frascati, Italy,
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033.
Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959.
Zhang, H., Zhang, D., Zhou, Y., Cutler, M. E. J., Cui, D., & Zhang, Z. (2022). Quantitative Analysis of the Interaction between Wind Turbines and Topography Change in Intertidal Wind Farms by Remote Sensing. Journal of Marine Science and Engineering, 10(4), 504. https://doi.org/10.3390/jmse10040504
Zhao, B., Guo, H., Yan, Y., Wang, Q., & Li, B. (2008). A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta. Estuarine, Coastal and Shelf Science, 77(1), 134-142.
Zhu, X., & Helmer, E. H. (2018). An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sensing of Environment, 214, 135-153.
Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269-277.
指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明