參考文獻 |
參考文獻
[1] 陳惠國,2021,運輸規劃-基礎與進階,國立中央大學土木工程學系,桃園市。
[2] 交通部運輸研究所著,2017.12,台北區域整體運輸規劃-旅次特性調查與供需分析。
[3] Aguiléra, V., Allio, S., Benezech, V., Combes, F., & Milion, C., 2014. Using cell phone data to measure quality of service and passenger flows of Paris transit system. Transportation Research Part C: Emerging Technologies, 43, 198-211.
[4] Alexander, L., Jiang, S., Murga, M., & González, M. C., 2015. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240-250.
[5] Bonnetain, L., Furno, A., El Faouzi, N. E., Fiore, M., Stanica, R., Smoreda, Z., & Ziemlicki, C., 2021. TRANSIT: Fine-grained human mobility trajectory inference at scale with mobile network sighting data. Transportation Research Part C: Emerging Technologies, 130, 103-257.
[6] Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira Jr, J., & Ratti, C., 2013. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation research part C: emerging technologies, 26, 301-313.
[7] Chen, C., Bian, L., & Ma, J., 2014, From traces to trajectories: How well can we guess activity locations from mobile phone traces. Transportation Research Part C: Emerging Technologies, 46, 326-337.
[8] Chen, H. K., Ho, H. C., Wu, L. Y., Lee, I., & Chou, H. W., 2024. Two-stage procedure for transportation mode detection based on sighting data. Transportmetrica A: transport science, 20(1), 2118558.
[9] De Montjoye, Y. A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D., 2013. Unique in the crowd: The privacy bounds of human mobility. Scientific reports, 3(1), 1-5.
[10] Holleczek, T., Yu, L., Lee, J. K., Senn, O., Ratti, C., & Jaillet, P., 2014. Detecting weak public transport connections from cellphone and public transport data. In Proceedings of the 2014 International Conference on Big Data Science and Computing , 1-8.
[11] Hsueh, Y. L., Chen, H. C., & Huang, W. J., 2017. A Hidden Markov Model-Based Map-Matching Approach for Low-Sampling-Rate GPS Trajectories. In2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), 271-274.
[12] Huang, Z., Ling, X., Wang, P., Zhang, F., Mao, Y., Lin, T., & Wang, F. Y., 2018. Modeling real-time human mobility based on mobile phone and transportation data fusion. Transportation research part C: emerging technologies, 96, 251-269.
[13] Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C., 2014. Development of origin–destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63-74.
[14] Iovan, C., Olteanu-Raimond, A. M., Couronné, T., & Smoreda, Z., 2013. Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In Geographic information science at the heart of Europe, 247-265.
[15] Hsueh, Y. L., Chen, H. C., & Huang, W. J., 2017. A hidden Markov model-based map-matching approach for low-sampling-rate GPS trajectories. In 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), 271-274.
[16] Jagadeesh, G. R., & Srikanthan, T., 2017. Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2423-2434.
[17] Jagadeesh, G. R., & Srikanthan, T., 2015. Probabilistic Map matching of sparse and noisy smartphone location data. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 812-817.
[18] Lee, J. K., & Hou, J. C., 2006. Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing, 85-96.
[19] Li, G., Chen, C. J., Peng, W. C., & Yi, C. W., 2017. Estimating crowd flow and crowd density from cellular data for mass rapid transit. In Proceedings of the 6th International Workshop on Urban Computing, Halifax,18-30.
[20] Lu, Z., Long, Z., Xia, J., & An, C., 2019. A Random Forest Model for Travel Mode Identification Based on Mobile Phone Sighting Data. Sustainability, 11(21), 5950.
[21] Newson, P., & Krumm, J., 2009. Hidden Markov Map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 336-343.
[22] Nitsche, P., Widhalm, P., Breuss, S., Brändle, N., & Maurer, P., 2014. Supporting large-scale travel surveys with smartphones–A practical approach. Transportation Research Part C: Emerging Technologies, 43, 212-221.
[23] Quddus, M. A., Ochieng, W. Y., Zhao, L., & Noland, R. B., 2003. A general Map matching algorithm for transport telematics applications. GPS Solutions, 7(3), 157-167.
[24] Quddus, M. A., Noland, R. B., & Ochieng, W. Y., 2006. A high accuracy fuzzy logic based Map matching algorithm for road transport. Journal of Intelligent Transportation Systems,10(3), 103-115.
[25] Qi, L., Qiao, Y., Abdesslem, F. B., Ma, Z., & Yang, J., 2016. Oscillation resolution for massive cell phone traffic data. In Proceedings of the First Workshop on Mobile Data, 25-30.
[26] Quddus, M. A., Ochieng, W. Y., & Noland, R. B., 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation research part C: Emerging technologies, 15(5), 312-328.
[27] Reddy, A., Lu, A., Kumar, S., Bashmakov, V., & Rudenko, S., 2009. Entry-only automated fare-collection system data used to infer ridership, rider destinations, unlinked trips, and passenger miles. Transportation research record, 2110(1), 128-136.
[28] Tettamanti, T., Demeter, H., & Varga, I., 2012. Route choice estimation based on cellular sighting data. Acta Polytechnica Hungarica, 9(4), 207-220.
[29] Vlahogianni, E. I., Park, B. B., & Van Lint, J. W. C., 2015. Big data in transportation and traffic engineering. Transportation Research Part C, 161.
[30] Wang, F., & Chen, C., 2018. On data processing required to derive mobility patterns from passively-generated mobile phonedata. Transportation Research Part C: Emerging Technologies, 87, 58-74. |