博碩士論文 104486002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:166 、訪客IP:18.119.159.246
姓名 陳佳群(CHIA CHUN CHEN)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 兩種不同揀貨倉庫系統的揀貨問題研究
(Order Picking in Two different Types of Warehouse Systems)
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-7-31以後開放)
摘要(中) 訂單揀貨是倉庫運營的基石,既需要效率也需要可靠性,對於快速且可靠的訂單揀貨系統的追求已成為物流中的焦點。本研究針對兩種不同的倉庫系統進行討論,每一種倉庫系統都有其獨特的特徵和影響。第一種倉庫系統是擁有前後兩條橫向通道的倉庫,探討儲位分配策略和揀貨路徑策略對的訂單揀貨效率的影響,以及這兩種政策之間的相互作用,並同時探討倉庫長寬比例、訂單大小和需求法則等因素。第二種倉庫系統是具有多條橫向通道的設計,揀貨員需要在通道之間穿梭以從儲位中取出物品。這些橫向通道提供了揀貨路徑規劃的靈活性,但是,它們也使儲位分配策略和揀貨路徑策略變得更加複雜。針對具有多條橫向通道的倉庫,我提出了幾種儲位分配策略和揀貨路徑策略,並研究了它們對訂單揀貨效率的影響。
本研究提供對於儲位分配策略和揀貨路徑策略在不同倉庫系統的複雜關係進行探討,研究的主旨在提升訂單揀貨系統在不斷演變的物流領域中的效率和可靠性。
摘要(英) Order picking stands as the cornerstone of warehouse operations, requiring both efficiency and dependability. The quest for a swift and reliable order picking system has become a focal point in logistics. This study investigates two distinct warehouse systems, each holding its own unique characteristics and implications.
In the first warehouse system, I analyze the impact of storage assignment policies and routing policies on order picking performance in the warehouse with one front and one back cross aisle. Additionally, I explore the interplay between these two types of policies. Through numerous experiments conducted under various conditions, I examine factors such as warehouse aspect ratios, order list sizes, and diverse demand patterns. In the second warehouse system, I explore facilities with multiple cross aisles, where order pickers navigate aisles to retrieve items from storage. These cross aisles, situated at various points including the front, back, and between aisles, offer flexibility in routing. However, they also complicate storage assignment and route planning for order picking. I propose several storage assignment and routing policies tailored to warehouses with multiple cross aisles, investigating their impact on order picking performance. The findings from this study enrich the understanding of the complex relationship between storage assignment and routing policies across diverse warehouse settings. Ultimately, my research aims to improve the efficiency and accuracy of order picking systems within the constantly evolving logistics landscape.
關鍵字(中) ★ 物流中心
★ 揀貨倉庫系統
★ 訂單揀貨
★ 儲位分配策略
★ 揀貨路徑策略
★ 橫向通道
★ 多個橫向通道
關鍵字(英) ★ Warehouse
★ Distribution Center
★ Order Picking
★ Storage Assignment Policy
★ Routing Policy
★ Cross Aisles
★ Multiple Cross Aisles
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Research Background and Motive 1
1.2 Research Purpose 2
1.3 Scope of this Study 2
1.4 Architecture of this Study 3
Chapter 2 Literature Review 5
2.1 Storage Assignment 5
2.2 Routing Methods 9
2.3 Batching 14
2.4 Zoning 19
2.5 Other Issues 22
Chapter 3 Warehouse Systems and Assumptions 24
3.1 Warehouse I: Warehouse with Front and Back Cross Aisles 24
3.1.1 Routing Policies 25
3.1.2 Storage Assignment Policies 26
3.2 Warehouse II: Warehouse with Multiple Blocks (More Then 2 Cross Aisles) 30
3.2.1 Order-Picking Routing Policies for Warehouse II with Multiple Blocks 32
3.2.1.1 Transversal Policy for Warehouse II with Multiple Blocks (T-MB) 32
3.2.1.2 Largest Gap Policy for Warehouse II with Multiple Blocks (LG-MB) 34
3.2.1.3 Aisle-By-Aisle Policy for Warehouse II with Multiple Blocks (ABA-MB) 36
3.2.1.4 Combined Plus Policy for Warehouse II with Multiple Blocks (CP-MB) 37
3.2.1.5 Cross Aisle Policy for Warehouse II with Multiple Blocks (CA-MB) 39
3.2.1.6 Cross Aisle Plus Policy for Warehouse II with Multiple Blocks (CAP-MB) 40
3.2.2 Storage Assignment Policies for Warehouse II with Multiple Blocks 42
Chapter 4 Experimental Design 50
4.1 Experimental Design for Warehouse I with Single Block 50
4.2 Experimental Design for Warehouse II with Multiple Blocks 51
Chapter 5 Experimental Results of Warehouse I 52
5.1 Main Effects 56
5.2 Mutual Effects 61
Chapter 6 Experimental Results of Warehouse II 77
6.1 Main Effects 81
6.2 Mutual Effects 85
Chapter 7 Summaries and Conclusions 90
7.1 Summary of Warehouse I 90
7.2 Summary of Warehouse II 91
7.3 Future Research 92
List of References 94
參考文獻 1. Alipour, M., Mehrjedrdi, Y.Z., & Mostafaeipour, A. (2020). “A rule-based heuristic algorithm for on-line order batching and scheduling in an order picking warehouse with multiple pickers.” RAIRO Operations Research, 54(1), 101–107
2. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). “FCM: The fuzzy c-means clustering algorithm.” Computers & Geosciences, 10(2-3), 191–203.
3. Brynzer, H. & Johansson, M. I. (1996). “Storage location assignment: using the product structure to reduce order picking times.” International Journal of Production Economics, 46-47, 595-603.
4. Caron, F., Marchet, G. & Perego, A. (1998). “Routing policies and COI-based storage policies in picker-to-part systems.” International Journal of Production Research, 36(3), 713-732.
5. Chan F.T.S., & Chan H.K. (2011). “Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage.” Expert Systems with Applications, 38(3), 2686–2700.
6. Chen, M.C., & Wu, H.P. (2005). “An association-based clustering approach to order batching considering customer demand patterns.” Omega International Journal of Management Science 33(4), 333–343.
7. Chen, T.-L., Cheng, C.-Y., Chen, Y.-Y., & Chan, L.-K. (2015). “An efficient hybrid algorithm for integrated order batching, sequencing and routing problem.” International Journal of Production Economics, 159, 158–167.
8. Clarke G., & Wright J. W. (1964), “Scheduling of vehicles from a central depot to a number of delivery points.” Operations Research, 12(4), 568–581
9. Coyle, J., Bardi, E.J., & Langley, C. J. (1996). “The Management of Business Logistics, 6th Edition.” West Publishing, St. Paul, MN.
10. Dallari, F., Marchet, G., & Melacini, M. (2009). “Design of Order Picking System.” The International Journal of Advanced Manufacturing Technology, 42 (1–2), 1–12.
11. De Koster, R., Le-Duc, T., Roodbergen, & K.J. (2007). “Design and control of warehouse order picking: a literature review.” European Journal of Operational Research, 182(2), 481–501.
12. De Koster, R. & van der Poort, E. (1998). “Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions.” IIE Transactions, 30, 469-480.
13. De Koster, M. B. M., Van der Poort, E. S., & Wolters, M. (1999). “Efficient orderbatching methods in warehouses.” International Journal of Production Research, 37(7), 1479–1504.
14. Dukic, G., & Oluic, C. (2007). “Order-picking methods: improving order-picking efficiency.” International Journal of Logistics Systems and Management, 3(4), 451-460.
15. Elsayed E. A. (1981). “Algorithms for optimal material handling in automatic warehousing systems.” The International Journal of Production Research, 19(5), 525–535.
16. Elsayed E. A., & Unal O. I. (1989). “Order batching algorithms and travel-time estimation for automated storage/retrieval systems.” International Journal of Production Research, 27(7), 1097–1114
17. Gademann, A.J.R.N., Van den Berg, J.P., & Van der Hoff, H.H. (2001). “An order batching algorithm for wave picking in a parallel-aisle warehouse.” IIE Transactions, 33, 385–398.
18. Gademann, N., & Van De Velde, S. (2005). “Order batching to minimize total travel time in a parallel-aisle warehouse.” IIE Transactions, 37(1), 63–75.
19. Gibson D.R., & Sharp G.P. (1992). ”Order batching procedures.” European Journal of Operational Research, 58(1), 57–67
20. Glock, C. H., & Grosse, E. H. (2012). “Storage policies and order picking strategies in U-shaped order-picking systems with a movable base.” International Journal of Production Research, 50(16), 4344-4357.
21. Goetschalckx, M. & Ratliff, H.D. (1988a). “Order picking in an aisle.” IIE Transactions, 20(1), 53-62.
22. Goetschalckx, M. & Ratliff, H.D. (1988b). “An efficient algorithm to cluster order picking items in a wide aisle.” Engineering Costs and Production Economics, 13, 263-271.
23. Gong, Y., & De Koster, R. (2011). “A review on stochastic models and analysis of warehouse operations.” Logistics Research, 3(4), 191–205.
24. Guo, X., Yu, Y., & De Koster, R. (2015). “Impact of required storage space on storage policy performance in a unit-load warehouse.” International Journal of Production Research, 54(8), 2405–2418.
25. Gue, K. R., Ivanović, G., & Meller, R. D. (2012). “A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles.” Transportation Research Part E: Logistics and Transportation Review, 48(4), 795-806.
26. Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). “Optimal storage assignment in automatic warehousing systems.” Management Science, 22(6), 629-638.
27. Hall, R.W. (1993). “Distance approximations for routing manual pickers in a warehouse.” IIE Transactions, 25(4), 76-87.
28. Helsgaun, K., (2000). “An effective implementation of the Lin–Kernighan traveling salesman heuristic.” European Journal of Operational Research, 126(1), 106–130.
29. Henn, S., Koch, S., Doerner, K., Strauss, C., & Wäscher, G. (2010). “Metaheuristics for the order batching problem in manual order picking systems.” BuR – Business Research, 3(1), 82–105.
30. Henn, S., Koch, S., & Wäscher, G. (2012). “Order Batching in Order Picking Warehouses: A Survey of Solution Approaches.” Warehousing in the Global Supply Chain, 105–137.
31. Ho, Y.-C. & Liu, C. -F. (2005). “A design methodology for converting a regular warehouse into a zone-picking warehouse.” Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
32. Ho, Y.-C., Su, T.-S., Shi, Z.-B. (2008). “Order-batching methods for an order-picking warehouse with two cross aisles.” Computers & Industrial Engineering, 55(2), 321–347.
33. Ho, Y.-C. & Tseng, Y. -Y. (2006). “A study on order-batching methods of order-picking in a distribution centre with two cross-aisles.” International Journal of Production Research, 44(17), 3391-3417.
34. Hong, S., Johnson, A. L., & Peters, B. A. (2012). “Batch picking in narrow-aisle order picking systems with consideration for picker blocking.” European Journal of Operational Research, 221(3), 557–570.
35. Jarvis, J.M. & McDowell, E.D. (1991). “Optimal product layout in an order picking warehouse.” IIE Transactions, 23(1), 93-102.
36. Le-Duc, T., & De Koster, R. (2007). “Travel time estimation and order batching in a 2-block warehouse.” European Journal of Operational Research, 176(1), 374–388.
37. Lee, I.G., Chung, S.H., Yoon, S.W. (2020), “Two-stage storage assignment to minimize travel time and congestion for warehouse order picking operations.” Computers & Industrial Engineering, 139, 106129.
38. Marchet, G., Melacini, M., & Perotti, S. (2015). “Investigating order picking system adoption: A case-study-based approach.” International Journal of Logistics Research and Applications, 18 (1), 82–98.
39. Masae, M., Glock, C. H., & Vichitkunakorn, P. (2021). “A method for efficiently routing order pickers in the leaf warehouse.” International Journal of Production Economics, 234, 108069.
40. Muter, I. & Öncan, T. (2022). “Order batching and picker scheduling in warehouse order picking.” IISE Transactions, 54 (5), 435-447.
41. Pan J.C.-H, Shih P.-H, & Wu M.-H. (2012). “Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system.” Computers & Industrial Engineering, 62(2), 527–535.
42. Parikh, P. J., & Meller, R. D. (2008). “Selecting between batch and zone order picking strategies in a distribution center.” Transportation Research Part E: Logistics and Transportation Review, 44(5), 696–719.
43. Petersen, C.G. (1997). “An evaluation of order picking routing policies.” International Journal of Operations & Production Management, 17(11), 1098-1111.
44. Petersen, C.G. (2002). “Considerations in order picking zone configuration.” International Journal of Operations & Production Management, 22(7), 793-805.
45. Petersen, C.G. & Aase, G. (2004). “A comparison of picking, storage, and routing policies in manual order picking.” International Journal of Production Economics, 92, 11-19.
46. Petersen, C.G., Aase, G. R. & Heiser, D.R. (2004). “Improving order-picking performance through the implementation of class-based storage.” International Journal of Physical Distribution & Logistics Management, 34(7), 534-544.
47. Petersen, C.G. & Schmenner, R.W. (1999). “An evaluation of routing and volume-based storage policies in an order picking operation.” Decision Science, 30(2), 481-501.
48. Pohl, L. M., Meller, R. D., & Gue, K. R. (2009). “Optimizing fishbone aisles for dual- command operations in a warehouse.” Naval Research Logistics (NRL), 56(5), 389–403.
49. Quintanilla, S., Pérez, Á., Ballestín, F., & Lino, P. (2015). “Heuristic Algorithms for a Storage Location Assignment Problem in a Chaotic Warehouse.” Engineering Optimization, 47(10), 1405–1422.
50. Rao, S. S., & Adil G. K. (2013). “Class-based Storage with Exact S-shaped Traversal Routeing in Low-level Picker-to-part Systems,” International Journal of Production Research, 51(16), 4979–4996.
51. Ratliff, H.D. & Rosenthal, A.S. (1983). “Order-Picking in a Rectangular Warehouse: a Solvable Case of the Traveling Salesman Problem.” Operations Research, 31(3), 507-521.
52. Roodbergen, K.J., & De Koster, R. (2001). “Routing methods for warehouses with multiple cross aisles.” International Journal of Production Research, 39(9), 1865–1883.
53. Ross, T. J. (2010). “Fuzzy Logic with Engineering Applications, Third Edition.” Wiley.
54. Saylam, S., Çelik, M., & Süral, H. (2023). “The min–max order picking problem insynchronised dynamic zone-picking systems.” International Journal of Production Research, 61(7), 2086–2104.
55. Scholz, A., Schubert, D., & Wäscher, G. (2017). “Order picking with multiple pickers and due dates simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems.” European Journal of Operational Research, 263(2), 461–478.
56. Scholz A. & Wäscher G. (2017). “Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing.” Central European Journal of Operations Research, 25(2), 491–520.
57. Silva, A., Coelho, L.C., Darvish, M., & Renaud, J. (2020). “Integrating storage location and order picking problems in warehouse planning.” Transportation Research Part E, 140, 102003.
58. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). “Using a TSP heuristic for routing order pickers in warehouses.” European Journal of Operational Research, 200(3), 755–763.
59. Van Gils, T., Ramaekers, K., Caris, A., & Cools, M. (2017). “The use of time series forecasting in zone order picking systems to predict order pickers workload.” International Journal of Production Research, 55(21), 6380-6393.
60. Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). “Increasing Order Picking Efficiency by Integrating Storage, Batching, Zone Picking, and Routing Policy Decisions.” International Journal of Production Economics, 197, 243-261.
61. Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., & De Koster, M. B. M. (2019). “Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems.” Transportation Research Part E, 125, 47-73.
62. Vanheusden, S., Van Gils, T., Caris, A., Ramaekers, & K., Braekers, K. (2020). “Operational workload balancing in manual order picking.” Computers & Industrial Engineering, 141, 106269.
63. Vaughan, T.S., Petersen, C.G. (1999). “The effect of warehouse cross aisles on order picking efficiency.” International Journal of Production Research, 37(4), 881–897.
64. Yu, Y., De Koster, R., & Guo, X. (2015). “Class-based storage with a finite number of items: Using more classes is not always better.” Production and Operations Management, 24(8), 1235–1247.
65. Windhausen, A., Heller, J., Hilken, T., Mahr, D., Palma, R. D. & Quintens, L. (2024). “Exploring the impact of augmented reality smart glasses on worker well-being in warehouse order picking.” Computers in Human Behavior, 155, 108153.
66. Winkelhaus, S., Zhang, M., Grosse, E. H. & Glock, C. H. (2022). “Hybrid order picking: A simulation model of a joint manual and autonomous order picking system.” Computers & Industrial Engineering, 167, 107981.
67. Wruck, S., Vis, I. F. A., & Boter, J. (2016). “Risk control for staff planning in e-commerce warehouses.,” International Journal of Production Research, 55(21), 6453–6469.
68. Zhang, D., Pee, L. G. & Cui, L. (2021). “Artificial intelligence in E-commerce fulfillment: A case study of resourceorchestration at Alibaba’s Smart Warehouse.” International Journal of Information Management, 57, 102304.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明