博碩士論文 110324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.222.167.153
姓名 林彥妘(Yen-Yun LIN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 磷脂質對硬脂基化的Indolicidin的 自組裝與基因輸送的影響
(The Effects of Phospholipids on the Self-Assembly and Gene Delivery of Stearylated Indolicidin)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Indolicidin (IL)的C端硬脂基化所形成的兩親性ILs在水溶液中能自組裝,而將ILs混入輔助脂質二油酰磷脂酰乙醇胺 (DOPE)可促進基因輸送效果。為了瞭解輔助脂質與ILs之間的關係,我們除了DOPE另外比較加入了頭基有三甲基的二棕櫚酰磷脂酰膽鹼(DOPC)及尾基為飽和長碳鏈的1,2-二硬脂醯-sn-甘油-3-磷酸乙醇胺(DSPE)組別,將這三種脂質分別以莫耳比1:0.3與ILs進行混合後並名為ILs0.3E、ILs0.3C及ILs0.3S,以分別探討脂質的頭基大小和長碳鏈飽和度對於自組裝結構、基因輸送及轉染等之效果。由穿透式電子顯微鏡 (TEM)觀察到ILs呈現樹枝柱狀結構,ILs0.3E及ILs0.3C後則會自組裝變成球狀結構,ILs0.3S則同時具備球狀及柱狀結構。動態光散射儀 (DLS)結果證實到ILs可藉由加入輔助脂質縮小載體的粒徑。以小角度X光散射儀 (SAXS)進行擬合分析,推測ILs是以核殼柱狀的反膠束結構形成,並聚集成柱狀結構。ILs加入輔助脂質後則會形成囊胞,其中ILs0.3E及ILs0.3C組的厚度相似,但DSPE因具備飽和長碳鏈尾基,故其分子間有較強的作用力,造成ILs0.3S所得到的囊胞,兩種分子不易均勻分散彼此,使結構較為鬆散且膜厚增加。而此相容性不佳的現象也導致部分ILs仍保持原先自我的組裝結構,使TEM結果中能觀察到結構共存。以溴化乙錠(EtBr)進行電泳及包覆分析,ILs因為加入輔助脂質後可以形成小粒徑的囊胞,因此在低濃度時即可完整DNA。由流式細胞儀結果發現,ILs0.3E與ILs0.3C可以提高細胞攝取率,但ILs0.3S與ILs 的細胞攝取率相當。在轉染實驗中,ILs0.3E與ILs0.3C轉基因表現均高於ILs,而ILs0.3S沒有促進的效果。但其中ILs0.3E的表現明顯優於ILs0.3C。我們以螢光標定載體及DNA,並以雷射共軛焦顯微鏡去觀察其輸送途徑。所有的載體都能以胞吞的方式攝入,然而ILs0.3E比其他組別多了膜融合的途徑。相較於胞吞的DNA須自內體逃脫,若以膜融合途徑則可直接進入細胞並表現轉基因,最終使得ILs0.3E表現最佳的轉染效率。透過本研究我們發現胜肽加入輔助脂質後,不僅會改變自組裝結構,且可以促進基因裝載及細胞攝取,甚至還會影響輸送途徑及轉染的效率,這些結果顯示輔助脂質的添加對於胜肽基因載體具有關鍵的控制效果。
摘要(英) The C-terminus of Indolicidin (IL) was stearylated to form amphiphilic ILs, which can self-assemble in an aqueous environment. A helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), has been combined with ILs to promote gene delivery. To elucidate the promotion effects of DOPE, we additionally investigated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), which owns a trimethylated head group, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), which owns saturated hydrocarbon tails. These 3 lipids were individually mixed with ILs in a molar ratio of 0.3:1 and denoted as ILs0.3E, ILs0.3C, and ILs0.3S, respectively. By this, we may evaluate the structure effects of head groups and tail saturation on self-assembly structure, gene delivery, and transfection efficiency. The transmission electron microscopy (TEM) results showed that ILs exhibited dendritic cylinder structures, whereas ILs0.3E and ILs0.3C formed spheres. Interestingly, ILs0.3S demonstrated both cylinder and sphere structures. The results of dynamic light scattering (DLS) indicated that incorporating helper lipids reduced the size of self-assembled carriers. Structures inferred from TEM images were evaluated by small-angle X-ray scattering (SAXS) fitting. The results indicated that ILs formed reverse micelles in core-shell cylindrical structures and aggregated to each other as bundles. The incorporation of helper lipids resulted in vesicle formation. Among them, ILs0.3E and ILs0.3C exhibited similar membrane thickness, whereas ILs0.3S vesicles demonstrated thicker membrane thickness. We speculated that stronger intermolecular forces between DSPE molecules due to their saturated hydrocarbon chain hindered their dispersion with ILs molecules in vesicle membranes. Some ILs cylinders were also retained without the addition of DSPE, so two different structures appeared in TEM images. Ethidium bromide (EtBr) displacement and electrophoresis analysis showed that smaller vesicles formed due to the incorporation of helper lipids demonstrated superior DNA complexation capacity even at low concentrations. Flow cytometry examination showed that ILs0.3E and ILs0.3C exhibited higher cellular uptake efficiency than those of ILs0.3S and ILs, and thus these two groups also demonstrated higher transgene expression. Interestingly, although the internalization efficiency of ILs0.3E and ILs0.3C were comparable, the transfection efficiency of ILs0.3E was higher than that of ILs0.3C. Therefore, we used fluorescent labeling to track DNA and carrier molecules during transfection, which were analyzed by confocal microscopy to determine their transportation pathways. All carriers can be internalized through endocytosis, but only ILs0.3E possessed an additional membrane fusion pathway. Different from endocytic DNA, which has to be released from endosomes, the fusion pathway allows DNA to directly enter cytosol for transgene expression, and thus ILs0.3E demonstrated the best transfection efficiency. Through this study, we demonstrated that peptides with helper lipid incorporation not only altered self-assembly structure but also promoted gene encapsulation and cell uptake, which eventually regulated transportation pathway and determined the transfection efficiency. These results provided useful information for peptide-lipid combo-vector development.
關鍵字(中) ★ 脂肽複合物
★ 輔助脂質
★ 雙親性胜肽
★ 基因輸送
關鍵字(英) ★ Indolicidin
★ Gene delivery
★ peptide
★ helper lipid
論文目次 摘要 i
Abstract iii
致謝 v
圖目錄 x
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 實驗設計 6
第二章 文獻回顧 7
2-1 基因治療 7
2-2 胜肽基因載體 8
2-2-1 細胞穿膜胜肽 (Cell Penetrating Peptides, CPPs) 8
2-2-2 細胞穿膜胜肽運輸途徑 10
2-2-3 Indolicidin (IL) 12
2-2-4 胜肽的硬脂基化改質 12
2-3 脂質 (Lipids) 14
2-3-1脂質體 (Liposomes) 15
2-3-2脂質體運輸途徑 16
2-3-3 輔助脂質(Helper lipid) 18
2-3-4 脂質/胜肽複合物 21
第三章 實驗藥品、儀器與方法 23
3-1 實驗材料 23
3-1-1 質體DNA 23
3-1-2 胜肽(Peptide) 24
3-1-3 細胞培養藥品 25
3-1-4 分析藥品 26
3-2 實驗儀器 28
3-3 實驗方法 30
3-3-1 溶液配置 30
3-3-2 胜肽/脂質(Peptide/Lipid) 奈米粒子的stock solution製備 34
3-3-3 胜肽/脂質/螢光頭基脂質 (Peptide/Lipid/TF-PE)奈米粒子製備 36
3-3-4 質體DNA純化 38
3-3-5 HEK-293T細胞培養 38
3-3-6 載體及載體/DNA性質分析 42
3-3-7 包覆率測定 49
3-3-8 載體進入細胞之效率分析(Flow cytometer) 56
3-3-9 載體進入細胞之轉染途徑分析雷射共軛焦顯微鏡 (Confocal microscopy) 59
3-3-10 SAXS 數據處理 62
第四章 結果與討論 73
4-1 自組裝奈米結構物性測量 73
4-1-1 奈米粒子結構與粒徑大小 73
4-1-2 奈米粒子的粒徑分布 76
4-1-3 表面電位 (Zeta potential) 78
4-1-4 小角X光散射 (Small angle-X ray scattering) 79
4-2 自組裝奈米粒子與DNA的複合結構 90
4-2-1 載體/DNA複合物的結構與粒徑大小 90
4-2-2 載體/DNA複合物的粒徑分布 92
4-2-3 載體/DNA複合物的表面電位 94
4-2-4 小角X光散射 (Small angle-X ray scattering) 95
4-2-5 載體/DNA包覆率測試 102
4-3 載體細胞攝取效果 106
4-3-1 流式細胞儀分析(Flow cytometry) 106
4-3-2 轉染效率分析 108
4-3-3 載體進入途徑 (雷射共軛焦顯微鏡) 110
4-4輔助脂質對於IL轉染的效應 114
第五章 結論 116
第六章 參考資料 119
參考文獻 1. Mendell, J.R., et al., Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy, 2021. 29(2): p. 464-488.
2. Alhashimi, M., et al., Nonhuman adenoviral vector-based platforms and their utility in designing next generation of vaccines for infectious diseases. Viruses, 2021. 13(8): 1493.
3. Marshall, E., Gene therapy a suspect in leukemia-like disease. American Association for the Advancement of Science, 2002. 298(5591): p. 34-35
4. Buckley, R.H., Gene therapy for SCID—a complication after remarkable progress. The Lancet, 2002. 360(9341): p. 1185-1186.
5. Derossi, D., et al., The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994. 269(14): p. 10444-10450.
6. Kaygisiz, K., et al., Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides. Nature Communications, 2023. 14(1): 5121.
7. Whelehan, C.J., et al., Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue. BMC Genomics, 2014. 15: p. 1-13.
8. 沈筱容, 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體, 國立中央大學化學工程與材料工程學系碩士論文, 2019.
9. 謝勗元, 利用磷脂質促進硬脂基化胜肽之基因輸送, 國立中央大學化學工程與材料工程學系碩士論文, 2021.
10. 白旭閎, 影響硬脂基化Indolicidin結構的因子及其基因傳輸效果的探討, 國立中央大學化學工程與材料工程學系碩士論文, 2022.
11. Kolašinac, R., et al., Deciphering the functional composition of fusogenic liposomes. International Journal of Molecular Sciences, 2018. 19(2): 346.
12. Ma, C.-C., et al., The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnology Advances, 2020. 40: 107502.
13. Scheller, E. and P. Krebsbach, Gene therapy: design and prospects for craniofacial regeneration. Journal of Dental Research, 2009. 88(7): p. 585-596.
14. Yang, Y., et al., Application of peptides in construction of nonviral vectors for gene delivery. Nanomaterials, 2022. 12(22): 4076.
15. Khavinson, V.K., et al., Peptide regulation of gene expression: A systematic review. Molecules, 2021. 26(22): 7053.
16. Chugh, A., F. Eudes, and Y.S. Shim, Cell‐penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life, 2010. 62(3): p. 183-193.
17. Jafari, S., S.M. Dizaj, and K. Adibkia, Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. BioImpacts: BI, 2015. 5(2): 103.
18. Gori, A., et al., Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem, 2023. 18(17): 202300236.
19. Numata, K., et al., Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Scientific Reports, 2018. 8(1): 10966.
20. Layek, B., L. Lipp, and J. Singh, Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. International Journal of Molecular Sciences, 2015. 16(12): p. 28912-28930.
21. Jaroniec, C.P., et al., Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain. Biochemistry, 2005. 44(49): p. 16167-16180.
22. Desale, K., K. Kuche, and S. Jain, Cell-penetrating peptides (CPPs): An overview of applications for improving the potential of nanotherapeutics. Biomaterials Science, 2021. 9(4): p. 1153-1188.
23. Liang, Y., et al., Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics, 2022. 12(11): 4866.
24. Martin, I. and J.-M. Ruysschaert, Common properties of fusion peptides from diverse systems. Bioscience Reports, 2000. 20(6): p. 483-500.
25. Placidi, G., et al., Small molecules targeting endocytic uptake and recycling pathways. Frontiers in Cell and Developmental Biology, 2023. 11: 1125801.
26. Somvanshi, P. and S. Khisty, Peptide-based DNA delivery system. Medicine in Novel Technology and Devices, 2021. 11: 100091.
27. Rahimi, H., et al., Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. International Journal of Nanomedicine, 2019. 14: p. 5323-5338.
28. Galdiero, E., et al., An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. International Journal of Nanomedicine, 2016. 11: p. 4199-4211.
29. Futaki, S., et al., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjugate Chemistry, 2001. 12(6): p. 1005-1011.
30. Li, Y., et al., Fatty acid modified octa-arginine for delivery of siRNA. International Journal of Pharmaceutics, 2015. 495(1): p. 527-535.
31. Boisguérin, P., et al., Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines, 2021. 9(5): 583.
32. White, B.J., et al., Colorimetric biosensor: Crosslinker variations. US Naval Research Laboratory Memorandum Report, NRL/MR/6930--18-9820, 2018.
33. Watson, H., Biological membranes. Essays in Biochemistry, 2015. 59: p. 43-69.
34. Zhao, Y. and L. Huang, Lipid nanoparticles for gene delivery. Advances in genetics, 2014. 88: p. 13-36.
35. Mardešić, I., et al., Membrane models and experiments suitable for studies of the cholesterol bilayer domains. Membranes, 2023. 13(3): 320.
36. Chesnoy, S. and L. Huang, Structure and function of lipid-DNA complexes for gene delivery. Annual Review of Biophysics and Biomolecular Structure, 2000. 29(1): p. 27-47.
37. Kolašinac, R., Characterization and application of fusogenic liposomes. Universitäts-und Landesbibliothek Bonn, 2020.
38. Bonaccorso, A., et al., The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals, 2023. 16(6): 778.
39. Gbian, D.L. and A. Omri, Lipid-based drug delivery systems for diseases managements. Biomedicines, 2022. 10(9): 2137.
40. Guimaraes, P.P., et al., Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019. 316: p. 404-417.
41. Hui, S.W., et al., The role of helper lipids in cationic liposome-mediated gene transfer. Biophysical Journal, 1996. 71(2): p. 590-599.
42. Ermilova, I. and J. Swenson, DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Physical Chemistry Chemical Physics, 2020. 22(48): p. 28256-28268.
43. LoPresti, S.T., et al., The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. Journal of Controlled Release, 2022. 345: p. 819-831.
44. Wilhelmy, C., et al., Polysarcosine-functionalized mRNA lipid nanoparticles tailored for immunotherapy. Pharmaceutics, 2023. 15(8): 2068.
45. Vysochinskaya, V., et al., Influence of Lipid Composition of Cationic Liposomes 2X3-DOPE on mRNA Delivery into Eukaryotic Cells. Pharmaceutics, 2022. 15(1): 8.
46. Medjmedj, A., et al., In Cellulo and in vivo comparison of cholesterol, Beta-sitosterol and dioleylphosphatidylethanolamine for lipid nanoparticle formulation of mRNA. Nanomaterials, 2022. 12(14): 2446.
47. Mochizuki, S., et al., The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(2): p. 412-418.
48. Hattori, Y., et al., Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs. Molecular Medicine Reports, 2023. 28(4): p. 1-12.
49. Hattori, Y., et al., Optimal combination of cationic lipid and phospholipid in cationic liposomes for gene knockdown in breast cancer cells and mouse lung using siRNA lipoplexes. Molecular Medicine Reports, 2022. 26(2): p. 1-12.
50. Kolašinac, R., et al., Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. Nanomaterials, 2019. 9(7): 1025.
51. Cunningham, S., et al., Evaluation of a porcine model for pulmonary gene transfer using a novel synthetic vector. The Journal of Gene Medicine: A Cross‐disciplinary Journal for Research on the Science of Gene Transfer and Its Clinical Applications, 2002. 4(4): p. 438-446.
52. Jenkins, R., et al., An integrin-targeted non-viral vector for pulmonary gene therapy. Gene Therapy, 2000. 7(5): p. 393-400.
53. Hart, S.L., et al., Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Human Gene Therapy, 1998. 9(4): p. 575-585.
54. Li, Q., et al., Lipid‐Peptide‐mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. Advanced Science, 2023. 10(3): 2204334.
55. Zeng, Y., et al., Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. Nanoscale, 2023. 15(37): p. 15206-15218.
56. Robinson, J.P., et al., Flow cytometry: the next revolution. Cells, 2023. 12(14): 1875.
57. 莊偉綜, et al., 同步輻射小角度X光散射在化學材料之應用. 化學, 2009. 67(3): p. 253-263.
58. Napieraj, M., Effect of stucture on digestion of proteins. Université Paris-Saclay, 2023.
59. Tian, Y., et al., Nanotubes, plates, and needles: pathway-dependent self-assembly of computationally designed peptides. Biomacromolecules, 2018. 19(11): p. 4286-4298.
60. Peetla, C., A. Stine, and V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Molecular Pharmaceutics, 2009. 6(5): p. 1264-1276.
61. Bazin, D., et al. X-ray studies on biological membranes using synchrotron radiation. Springer Nature in Synchrotron Radiation in Chemistry and Biology I. 1988. p. 173-202
62. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003. 36(6): p. 1378-1388.
63. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000. 62(3): 4000.
64. Ko, T.H. and Y.-F. Chen, Correlation between the In-Plane Critical Behavior and Out-of-Plane Interaction of Ternary Lipid Membranes. Membranes, 2022. 13(1): 6.
65. Chung, P.J., et al., Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Proceedings of the National Academy of Sciences, 2015. 112(47): p. e6416-e6425.
66. Lombardo, D., et al., Evidence of pre-micellar aggregates in aqueous solution of amphiphilic PDMS–PEO block copolymer. Physical Chemistry Chemical Physics, 2019. 21(22): p. 11983-11991.
67. Qi, M. and Y. Zhou, Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers, 2019. 3(10): p. 1994-2009.
68. Moghaddam, B., et al., Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy. Pharmaceutics, 2011. 3(4): p. 848-864.
69. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical Journal, 2004. 377(1): p. 159-169.
70. Kono, Y., et al., Influence of physicochemical properties and PEG modification of magnetic liposomes on their interaction with intestinal epithelial Caco-2 cells. Biological and Pharmaceutical Bulletin, 2017. 40(12): p. 2166-2174.
71. Caracciolo, G., et al., Multicomponent cationic lipid− DNA complex formation: Role of lipid mixing. Langmuir, 2005. 21(25): p. 11582-11587.
72. Akimov, S.A., et al., Continuum models of membrane fusion: Evolution of the theory. International Journal of Molecular Sciences, 2020. 21(11): 3875.
73. Perrin, B.S. and R.W. Pastor, Simulations of membrane-disrupting peptides I: alamethicin pore stability and spontaneous insertion. Biophysical Journal, 2016. 111(6): p. 1248-1257.
74. Du, Z., et al., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4(1): p. 1-6.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2024-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明