博碩士論文 111324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:3.145.188.41
姓名 黃筱喻(Hsiao-Yu Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具拮抗性的乙醇與水組成的奈米液滴在石墨烯表面上的特殊潤濕行為
(Peculiar wetting behavior of nanodroplets comprising antagonistic alcohol-water mixtures on a graphene surface)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 在特定基材上,不同液體呈現不同的潤濕行為,主要區分為部分潤濕和完全潤濕。日常生活中常常遇到由部分潤濕和完全潤濕液體組成的二元混合物,其又稱為拮抗混合物。雖然拮抗混合物的潤濕行為與一般液體有所不同,但針對此現象的研究卻相對稀少。而在奈米尺度上,拮抗混合物組成的奈米液滴的潤濕行為可能與我們現有的理解更加不同。
透過分子動力學模擬,我們研究了石墨烯表面上含有水(部分潤濕)和乙醇或異丙醇(完全潤濕)混合物之奈米液的滴潤濕行為。
通過調整混合物中水的莫耳分率(xw),可以發現三種不同的潤濕狀態:(I) 在完全潤濕狀態(低xw)下,觀察到自發性的擴散現象;(II) 在平台狀態(中xw)下,表觀的接觸角(CA)保持恆定,但液滴中的醇類化合物會滲漏出來;(III) 在部分潤濕狀態(高xw)下,CA隨xw增加而增加,同時,醇類化合物傾向於聚集在接觸線附近。值得注意的是,擴散係數(S)在xw接近1時才變為負值,其餘情況下為正值。此外,即使在S < 0時,楊氏方程式也被證明不適用。而此篇研究將對這些特殊的潤濕現象進行全面的討論和說明。
摘要(英) Hypothesis
Binary mixtures, consisting of partially and totally wetting liquids with respect to a specific substrate and known as an antagonistic mixture, are commonly encountered. Although the wetting behavior of antagonistic mixtures deviates from that of conventional liquids, studies exploring this phenomenon are scarce. At the nanoscale, the wetting behavior of nanodroplets containing such mixtures may diverge even further from our established understanding.

Experiments
Employing Nanoscale Molecular Dynamics simulations, we explore the wetting behavior of nanodroplets containing mixtures of water (partial wetting) and ethanol or isopropanol (total wetting) on a graphene surface.

Findings
By adjusting the water fraction (xw) in the antagonistic mixture, three distinct wetting states have been identified: (I) In total wetting regime (low xw), spontaneous spreading is observed; (II) In plateau regime (medium xw), alcohol leakage from the droplet occurs, with the apparent contact angle (CA) remaining constant; (III) In partial wetting regime (high xw), the CA increases with xw and alcohol molecules tend to accumulate at the contact line. Unexpectedly, the spreading coefficient (S) remains positive and turns negative only as xw near unity. Furthermore, Young’s equation proves to be inapplicable even when S < 0. These peculiar wetting phenomena are comprehensively discussed and elucidated.
關鍵字(中) ★ 潤濕現象
★ 分子模擬
★ 奈米液滴
★ 二元混合物
★ 石墨烯
關鍵字(英) ★ wetting phenomenon
★ molecular dynamics
★ nanodroplet
★ binary mixture
★ graphene
論文目次 摘要 i
Abstract ii
致謝 iii
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter I Introduction 1
Chapter II Simulation method 5
2-1 Simulation details 5
2-2 Wetting simulation system and apparent CA measurement 6
2-3 Determination of interfacial tensions 6
2-3-1 Surface tension γlg: Irving-Kirkwood expression 6
2-3-2 Interfacial tension (γsg - γsl) via free energy perturbation 7
2-4 Radius of gyration of the adsorbed layer 7
Chapter III Results and discussion 8
3-1 Wetting morphology: from spontaneous spreading to partial wetting 8
3-1-1 Spontaneous spreading and total wetting 8
3-1-2 Leakage of alcohol and partial wetting 11
3-2 Wetting phase diagram 17
3-3 Positive spreading coefficient, failure of Young’s equation, and droplet inhomogeneity 24
Chapter IV Conclusions 31
References 33
Supporting Information 41
參考文獻 [1] S. Tanpichai, Y. Srimarut, W. Woraprayote, Y. Malila, “Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration,” Int. J. Biol. Macromol., Vol. 213, 2022, pp. 534-545.
[2] Y.-B. Li, Z.-N. Wen, B.-C. Sun, Y. Luo, K.-J. Gao, G.-W. Chu, “Flow patterns, liquid holdup, and wetting behavior of viscous liquids in a disk-distributor rotating packed bed,” Chem. Eng. Sci., Vol. 252, 2022, p. 117256.
[3] H. Zhang, L. Sun, J. Guo, Y. Zhao, “Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing,” Research, Vol. 6, 2023, p. 0129.
[4] T. Young, “III. An essay on the cohesion of fluids,” Philos. Trans. R. Soc., Vol. No. 95, 1805, pp. 65-87.
[5] N. K. Adam, “Use of the Term ‘Young’s Equation’ for Contact Angles,” Nature, Vol. 180, No. 4590, 1957, pp. 809-810.
[6] P. Roura, J. Fort, “Local thermodynamic derivation of Young’s equation,” J. Colloid Interface Sci., Vol. 272, No. 2, 2004, pp. 420-429.
[7] D. Seveno, T. D. Blake, J. De Coninck, “Young’s Equation at the Nanoscale,” Phys. Rev. Lett., Vol. 111, No. 9, 2013, p. 096101.
[8] C. Li, J. Zhang, J. Han, B. Yao, “A numerical solution to the effects of surface roughness on water-coal contact angle,” Sci. Rep., Vol. 11, No. 1, 2021, p. 459.
[9] J. Feng, Z. Guo, “Wettability of graphene: from influencing factors and reversible conversions to potential applications,” Nanoscale Horizons, Vol. 4, No. 2, 2019, pp. 339-364.
[10] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, “Graphene-based composites for electrochemical energy storage,” Energy Storage Mater., Vol. 24, 2020, pp. 22-51.
[11] K. Natesan, S. Karinka, “A comprehensive review of heat transfer enhancement of heat exchanger, heat pipe and electronic components using graphene,” Case Stud. Therm. Eng., Vol. 45, 2023, p. 102874.
[12] S. Ghosh, T. Mathews, B. Gupta, A. Das, N. Gopala Krishna, M. Kamruddin, “Supercapacitive vertical graphene nanosheets in aqueous electrolytes,” Nano-Struct. Nano-Objects, Vol. 10, 2017, pp. 42-50.
[13] B. Sohrabi, R. Jafari, A. Seidi, “The role of polarization effect on the hydrophobicity of graphene and graphene-based devices: Theoretical and computational studies,” Comput. Mater.Sci., Vol. 200, 2021, p. 110781.
[14] A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, “Understanding the intrinsic water wettability of graphite,” Carbon, Vol. 74, 2014, pp. 218-225.
[15] A. Kozbial, C. Trouba, H. Liu, L. Li, “Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles,” Langmuir, Vol. 33, No. 4, 2017, pp. 959-967.
[16] R. Seki, H. Takamatsu, Y. Suzuki, Y. Oya, T. Ohba, “Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 628, 2021, p. 127393.
[17] C.-J. Shih, Q. H. Wang, S. Lin, K.-C. Park, Z. Jin, M.S. Strano, D. Blankschtein, “Breakdown in the Wetting Transparency of Graphene,” Phys. Rev. Lett., Vol. 109, No. 17, 2012, p. 176101.
[18] C. D. van Engers, N. E. A. Cousens, V. Babenko, J. Britton, B. Zappone, N. Grobert, S. Perkin, “Direct Measurement of the Surface Energy of Graphene,” Nano Lett., Vol. 17, No. 6, 2017, pp. 3815-3821.
[19] T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao, Y.-J. Sheng, “Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density,” J. Mol. Liq., Vol. 352, 2022, p. 118701.
[20] U. Halim, C. R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, Y. Huang, X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction,” Nat. Commun., Vol. 4, No. 1, 2013, p. 2213.
[21] C. Vacacela Gomez, M. Guevara, T. Tene, L. Villamagua, G. T. Usca, F. Maldonado, C. Tapia, A. Cataldo, S. Bellucci, L. S. Caputi, “The liquid exfoliation of graphene in polar solvents,” Appl. Surf. Sci., Vol. 546, 2021, p. 149046.
[22] H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, “Abnormal wicking dynamics of total wetting ethanol in graphene nanochannels,” Phys. Fluids, Vol. 35, No. 5, 2023.
[23] J. A. Morton, A. Kaur, M. Khavari, A. V. Tyurnina, A. Priyadarshi, D. G. Eskin, J. Mi, K. Porfyrakis, P. Prentice, I. Tzanakis, “An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions,” Carbon, Vol. 204, 2023, pp. 434-446.
[24] K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, “Atypical wetting behavior of binary mixtures of partial and total wetting liquids: leak-out phenomena,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 666, 2023, p. 131299.
[25] K. Sefiane, L. Tadrist, M. Douglas, “Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transf., Vol. 46, No. 23, 2003, pp. 4527-4534.
[26] P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys., Vol. 57, No. 3, 1985, pp. 827-863.
[27] F. Oktasendra, A. Jusufi, A. R. Konicek, M. S. Yeganeh, J. R. Panter, H. Kusumaatmaja, “Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting cases,” J. Chem. Phys., Vol. 158, No. 20, 2023.
[28] F. Brochard-Wyart, J. M. Di Meglio, D. Quere, P. G. De Gennes, “Spreading of nonvolatile liquids in a continuum picture,” Langmuir, Vol. 7, No. 2, 1991, pp. 335-338.
[29] P. Silberzan, L. Léger, “Evidence for a new spreading regime between partial and total wetting,” Phys. Rev. Lett., Vol. 66, No. 2, 1991, pp. 185-188.
[30] M. N. Popescu, G. Oshanin, S. Dietrich, A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys. Condens. Matter, Vol. 24, No. 24, 2012, p. 243102.
[31] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, “Spreading dynamics of a precursor film of nanodrops on total wetting surfaces,” Phys. Chem. Chem. Phys., Vol. 19, No. 40, 2017, pp. 27786-27794.
[32] S. Shiomoto, H. Higuchi, K. Yamaguchi, H. Takaba, M. Kobayashi, “Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface,” Langmuir, Vol. 37, No. 10, 2021, pp. 3049-3056.
[33] L. Chen, E. Bonaccurso, “Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops,” Phys. Rev. E, Vol. 90, No. 2, 2014, p. 022401.
[34] P. G. Bange, G. Upadhyay, N. D. Patil, R. Bhardwaj, “Isothermal and non-isothermal spreading of a viscous droplet on a solid surface in total wetting condition,” Phys. Fluids, Vol. 34, No. 11, 2022.
[35] A. Azimi Yancheshme, G. R. Palmese, N. J. Alvarez, “A generalized scaling theory for spontaneous spreading of Newtonian fluids on solid substrates,” J. Colloid Interface Sci., Vol. 636, 2023, pp. 677-688.
[36] D. Guo, H. Liu, L. Zhou, J. Xie, C. He, “Plasma-activated water production and its application in agriculture,” J. Sci. Food Agric., Vol. 101, No. 12, 2021, pp. 4891-4899.
[37] M. Jayapal, H. Jagadeesan, V. Krishnasamy, G. Shanmugam, V. Muniyappan, D. Chidambaram, S. Krishnamurthy, “Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater,” Environ. Pollut., Vol. 302, 2022, p. 119009.
[38] G. Vazquez, E. Alvarez, J. M. Navaza, “Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C,” J. Chem. Eng. Data, Vol. 40, No. 3, 1995, pp. 611-614.
[39] P. Basařová, T. Váchová, L. Bartovská, “Atypical wetting behaviour of alcohol–water mixtures on hydrophobic surfaces,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 489, 2016, pp. 200-206.
[40] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, “Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets,” J. Colloid Interface Sci., Vol. 578, 2020, pp. 69-76.
[41] A. Fabien, G. Lefebvre, B. Calvignac, P. Legout, E. Badens, C. Crampon, “Interfacial tension of ethanol, water, and their mixtures in high pressure carbon dioxide: Measurements and modeling,” J. Colloid Interface Sci., Vol. 613, 2022, pp. 847-856.
[42] F. Brochard-Wyart, R. Fondecave, M. Boudoussier, “Wetting of antagonist mixtures: the ‘leak out’ transition,” Int. J. Eng. Sci., Vol. 38, No. 9, 2000, pp. 1033-1047.
[43] H.-J. Huang, K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, “Precursor film of self-propelled droplets: Inducing motion of a static droplet,” Journal of Molecular Liquids, Vol. 368, 2022, p. 120729.
[44] U. Anand, T. Ghosh, Z. Aabdin, S. Koneti, X. Xu, F. Holsteyns, U. Mirsaidov, “Dynamics of thin precursor film in wetting of nanopatterned surfaces,” Proc. Natl. Acad. Sci. U.S.A., Vol. 118, No. 38, 2021, p. e2108074118.
[45] W.-Z. Hsieh, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, “Diverse wetting behavior of a binary mixture of antagonist liquids: Nanodroplet with finite precursor film and leak-out phenomenon,” J. Mol. Liq., Vol. 372, 2023, p. 121197.
[46] M. Roché, L. Talini, E. Verneuil, “Complexity in Wetting Dynamics,” Langmuir, Vol. 40, No. 6, 2024, pp. 2830-2848.
[47] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, “NAMD2: Greater Scalability for Parallel Molecular Dynamics,” J. Chem. Phys., Vol. 151, No. 1, 1999, pp. 283-312.
[48] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem., Vol. 26, No. 16, 2005, pp. 1781-1802.
[49] W. Jiang, J. C. Phillips, L. Huang, M. Fajer, Y. Meng, J. C. Gumbart, Y. Luo, K. Schulten, B. Roux, “Generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD,” Comput. Phys. Commun., Vol. 185, No. 3, 2014, pp. 908-916.
[50] J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L.V. Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, “Scalable molecular dynamics on CPU and GPU architectures with NAMD,” J. Chem. Phys., Vol. 153, No. 4, 2020.
[51] W. Humphrey, A. Dalke, K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., Vol. 14, No. 1, 1996, pp. 33-38.
[52] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell Jr., “CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields,” J. Comput. Chem., Vol. 31, No. 4, 2010, pp. 671-690.
[53] S. A. Deshmukh, G. Kamath, S. K. R. S. Sankaranarayanan, “Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets,” Soft Matter, Vol. 10, No. 23, 2014, pp. 4067-4083.
[54] T. K. Mukhopadhyay, A. Datta, “Deciphering the Role of Solvents in the Liquid Phase Exfoliation of Hexagonal Boron Nitride: A Molecular Dynamics Simulation Study,” J. Phys. Chem. C, Vol. 121, No. 1, 2017, pp. 811-822.
[55] J. L. F. Abascal, C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” Chem. Phys. Lett.., Vol. 123, No. 23, 2005.
[56] J. Włoch, A. P. Terzyk, P. Kowalczyk, “New forcefield for water nanodroplet on a graphene surface,” Chem. Phys. Lett., Vol. 674, 2017, pp. 98-102.
[57] J. J. Potoff, J. R. Errington, A. Z. Panagiotopoulos, “Molecular simulation of phase equilibria for mixtures of polar and non-polar components,” Mol. Phys., Vol. 97, No. 10, 1999, pp. 1073-1083.
[58] T. Darden, D. York, L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys., Vol. 98, No. 12, 1993, pp. 10089-10092.
[59] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys., Vol. 103, No. 19, 1995, pp. 8577-8593.
[60] J. G. Kirkwood, F. P. Buff, “The Statistical Mechanical Theory of Surface Tension,” J. Chem. Phys., Vol. 17, No. 3, 1949, pp. 338-343.
[61] J. H. Irving, J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, No. 6, 1950, pp. 817-829.
[62] M. Rao, B. J. Berne, “On the location of surface of tension in the planar interface between liquid and vapour,” Mol. Phys., Vol. 37, No. 2, 1979, pp. 455-461.
[63] M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, “The statistical-thermodynamic basis for computation of binding affinities: a critical review,” Biophys. J., Vol. 72, No. 3, 1997, pp. 1047-1069.
[64] J. Hénin, J. Gumbart, C. Chipot, “In silico alchemy: A tutorial for alchemical free-energy perturbation calculations with NAMD,” Centre National de la Recherche Scientifique, University of Illinois, Urbana–Champaign, Vol. 2017.
[65] H. Chen, J. D. C. Maia, B. K. Radak, D. J. Hardy, W. Cai, C. Chipot, E. Tajkhorshid, “Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD,” J. Chem. Inf. Model., Vol. 60, No. 11, 2020, pp. 5301-5307.
[66] M.-C. Hsieh, Y.-H. Tsao, Y.-J. Sheng, H.-K. Tsao, “Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution,” Polymers, Vol. 15, No. 9, 2023, p. 2067.
[67] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, “Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends,” Phys. Chem. Chem. Phys., Vol. 22, No. 38, 2020, pp. 21801-21808.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明