博碩士論文 111324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.217.29.178
姓名 陳奕宏(Yi-Hung Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以矽奈米線場效電晶體量測半導體製程所使用之化學品中超低濃度金屬離子之研究
(Measurements of Ultra-Low Concentration of Metal Ions in Solvents Used in Semiconductor Manufacturing by Silicon Nanowire Field Effect Transistors)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著半導體技術的進步,對製程中所使用的化學品和有機溶劑中的金屬離子濃度的要求也日益增加,在業界大部分都是使用感應耦合電漿質譜儀(ICP-MS)來進行定性和定量分析。然而ICP-MS的檢測極限已無法滿足現今電子級化學品中超低金屬離子濃度的要求,且ICP-MS的高量測成本以及漫長的量測時間大幅增加了晶片的生產成本,因此,尋找ICP-MS的替代方案對於半導體製造商來說變得至關重要。本研究目的在於採用矽奈米線場效電晶體(SiNW-FET)作為檢測元件,開發了一種具有成本效益且快速檢測半導體晶片製程中使用的化學品中超低金屬離子濃度的方法。
摘要(英) As semiconductor technology advances, the stringent requirements for the concentration of metal ions in the chemicals and organic solvents used in the manufacturing process have increased. The industry predominantly relies on Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for qualitative and quantitative analysis. However, the detection limits of ICP-MS can no longer meet the ultra-low metal ion concentration requirements in modern electronic-grade chemicals. Additionally, the high measurement costs and lengthy measurement times of ICP-MS significantly increase the production costs of chips. Therefore, finding an alternative to ICP-MS has become crucial for semiconductor manufacturers. This study aims to develop a cost-effective and rapid method for detecting ultra-low metal ion concentrations in the chemicals used in semiconductor wafer processing by employing Silicon Nanowire Field-Effect Transistors (SiNW-FET) as the detection element.
關鍵字(中) ★ 金屬離子
★ 場效電晶體
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 3
2.1 重金屬離子 3
2.1.1 重金屬離子概論 3
2.1.2 重金屬離子對半導體製程所產生之影響 4
2.1.3 重金屬離子感測器 8
2.2 場效電晶體 9
2.2.1 場效電晶體介紹 9
2.2.2 閘極電壓施加方式 11
2.2.3 矽基場效電晶體於金屬離子感測器之應用 13
2.3 晶片表面改質 25
2.3.1 自組裝單層膜 25
2.3.2 聚乙二醇 28
第三章 實驗藥品、儀器與方法 29
3.1 實驗架構 29
3.2 實驗藥品 31
3.3 儀器設備 32
3.4 實驗步驟 33
3.4.1 晶片表面清洗 33
3.4.2 晶片表面改質 34
3.4.3 強酸鹼化學品前處理 34
3.4.4 SiNW-FET電訊號量測及數據分析方法 35
3.4.5 EGFET電訊號量測及數據分析方法 37
第四章 結果與討論 38
4.1 檢量線建立 38
4.1.1 純水中金屬離子檢測 38
4.1.2 有機溶劑中金屬離子檢測 43
4.1.3 強酸鹼化學品中金屬離子檢測 47
4.2 實際樣品檢測結果 52
4.3 以不同施加閘極方式之FET量測結果比較 57
4.3.1 Bottom Gate與Liquid Gate量測結果比較 57
4.3.2 Extended Gate與Liquid Gate量測結果比較 60
第五章 結論 64
第六章 未來展望 66
第七章 參考文獻 68
參考文獻 1. Alias, N., et al., 15 - Metal oxide for heavy metal detection and removal, in Metal Oxide Powder Technologies, Y. Al-Douri, Editor. 2020, Elsevier. p. 299-332.
2. Borrill, A.J., N.E. Reily, and J.V. Macpherson, Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst, 2019. 144(23): p. 6834-6849.
3. Gumpu, M.B., et al., A review on detection of heavy metal ions in water – An electrochemical approach. Sensors and Actuators B: Chemical, 2015. 213: p. 515-533.
4. Hagiwara, T., et al., Study on cone-defects during the pattern fabrication process with Silicon Nitride. Journal of photopolymer science and technology, 2015. 28(1): p. 17-24.
5. Baltpurvins, K.A., et al., Effect of pH and Anion Type on the Aging of Freshly Precipitated Iron(III) Hydroxide Sludges. Environmental Science & Technology, 1996. 30(3): p. 939-944.
6. Krehula, S. and S. Musić, Formation of iron oxides in a highly alkaline medium in the presence of palladium ions. Journal of Molecular Structure, 2009. 924-926: p. 201-207.
7. Silva, M.F., et al., Nanometric particle size and phase controlled synthesis and characterization of γ-Fe2O3 or (α + γ)-Fe2O3 by a modified sol-gel method. Journal of Applied Physics, 2013. 114(10).
8. Hung, D.Q., O. Nekrassova, and R.G. Compton, Analytical methods for inorganic arsenic in water: a review. Talanta, 2004. 64(2): p. 269-277.
9. Kos, V., et al., Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Fresenius′ Journal of Analytical Chemistry, 1996. 354(5): p. 648-652.
10. Zarazua, G., et al., Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(10): p. 1180-1184.
11. Bandodkar, A.J. and J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends in biotechnology, 2014. 32(7): p. 363-371.
12. Gao, W., et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016. 529(7587): p. 509-514.
13. Kim, S., et al., Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences, 2020. 117(45): p. 27906-27915.
14. Sekine, Y., et al., A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab on a Chip, 2018. 18(15): p. 2178-2186.
15. Yang, Y., et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature biotechnology, 2020. 38(2): p. 217-224.
16. Yoon, S., et al., A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angewandte Chemie, 2007. 119(35): p. 6778-6781.
17. Yang, Y., et al., Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosensors and Bioelectronics, 2018. 108: p. 82-88.
18. Bardeen, J. and W.H. Brattain, The Transistor, A Semi-Conductor Triode. Physical Review, 1948. 74(2): p. 230-231.
19. Atalla, M.M., E. Tannenbaum, and E.J. Scheibner, Stabilization of Silicon Surfaces by Thermally Grown Oxides*. Bell System Technical Journal, 1959. 38(3): p. 749-783.
20. Lee, C.-S., S.K. Kim, and M. Kim Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors, 2009. 9, 7111-7131 DOI: 10.3390/s90907111.
21. Paghi, A., S. Mariani, and G. Barillaro, 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. Small, 2023. 19(15): p. 2206100.
22. Cho, S.-K. and W.-J. Cho Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors, 2021. 21, DOI: 10.3390/s21124213.
23. Khan, M., et al., Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing. Analytical Chemistry, 2022. 94(25): p. 8867-8873.
24. Woo, J.-M., et al., Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method. Lab on a Chip, 2013. 13(18): p. 3755-3763.
25. Wu, C.-R., et al., Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sensors and Actuators B: Chemical, 2021. 334: p. 129567.
26. Mishra, A.K., et al., CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications. IEEE Sensors Journal, 2020. 20(9): p. 5039-5047.
27. Sarangadharan, I., et al., Single Drop Whole Blood Diagnostics: Portable Biomedical Sensor for Cardiac Troponin I Detection. Analytical Chemistry, 2018. 90(4): p. 2867-2874.
28. Pan, T.-M., et al., Rapid and label-free detection of the troponin in human serum by a TiN-based extended-gate field-effect transistor biosensor. Biosensors and Bioelectronics, 2022. 201: p. 113977.
29. Islam, S., et al., A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosensors and Bioelectronics, 2019. 126: p. 792-799.
30. Bandaru, P.R. and P. Pichanusakorn, An outline of the synthesis and properties of silicon nanowires. Semiconductor Science and Technology, 2010. 25(2): p. 024003.
31. Zheng, G., X.P.A. Gao, and C.M. Lieber, Frequency Domain Detection of Biomolecules Using Silicon Nanowire Biosensors. Nano Letters, 2010. 10(8): p. 3179-3183.
32. Bergveld, P., Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering, 1970. BME-17(1): p. 70-71.
33. Duc, T.N., et al., Label free femtomolar electrical detection of Fe (iii) ions with a pyridinone modified lipid monolayer as the active sensing layer. Journal of Materials Chemistry B, 2013. 1(4): p. 443-446.
34. Chaves, S., et al., Hydroxy(thio)pyrone and hydroxy(thio)pyridinone iron chelators: Physico-chemical properties and anti-oxidant activity. Journal of Inorganic Biochemistry, 2012. 114: p. 38-46.
35. Nguyen, T.D., et al., A field effect transistor biosensor with a γ-pyrone derivative engineered lipid-sensing layer for ultrasensitive Fe3+ ion detection with low pH interference. Biosensors and Bioelectronics, 2014. 54: p. 571-577.
36. Kenaan, A., et al., Femtomolar detection of Cu2+ ions in solution using super-Nernstian FET-sensor with a lipid monolayer as top-gate dielectric. Sensors and Actuators B: Chemical, 2020. 316: p. 128147.
37. Wu, T., et al., Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors. ACS Nano, 2017. 11(7): p. 7142-7147.
38. Spijkman, M., et al., Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Applied Physics Letters, 2011. 98(4): p. 043502.
39. Spijkman, M.-J., et al., Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution. Advanced Functional Materials, 2010. 20(6): p. 898-905.
40. Jang, H.-J. and W.-J. Cho, Performance Enhancement of Capacitive-Coupling Dual-gate Ion-Sensitive Field-Effect Transistor in Ultra-Thin-Body. Scientific Reports, 2014. 4(1): p. 5284.
41. Jin, Y., et al., Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors. Nanotechnology, 2018. 29(13): p. 135501.
42. Huang, Z., et al., Gold nanoparticle modified silicon nanowire array based sensor for low-cost, high sensitivity and selectivity detection of mercury ions. Materials Research Express, 2020. 7(3): p. 035017.
43. Chen, Y. and M. Hamidullah. High Sensitive Detection of Ag +  Ions in Aqueous Solution Using Silicon Nanowires and Silver-Specific Oligonucleotide. in The 15th International Conference on Biomedical Engineering. 2014. Cham: Springer International Publishing.
44. Sun, K., et al., Effect of subthreshold slope on the sensitivity of nanoribbon sensors. Nanotechnology, 2016. 27(28): p. 285501.
45. Zeimpekis, I., et al., Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins. Nanotechnology, 2016. 27(16): p. 165502.
46. Chang, H.-K., et al., Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis. MRS Online Proceedings Library (OPL), 2013. 1569: p. 213-218.
47. Synhaivska, O., et al. Detection of Cu2+ Ions with GGH Peptide Realized with Si-Nanoribbon ISFET. Sensors, 2019. 19, DOI: 10.3390/s19184022.
48. Le Borgne, B., et al., Covalent functionalization of polycrystalline silicon nanoribbons applied to Pb(II) electrical detection. Sensors and Actuators B: Chemical, 2018. 268: p. 368-375.
49. Rush, M.N., K.E. Coombs, and E.L. Hedberg-Dirk, Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta Biomaterialia, 2015. 28: p. 76-85.
50. Howarter, J.A. and J.P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane. Langmuir, 2006. 22(26): p. 11142-11147.
51. Singh, M., N. Kaur, and E. Comini, The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 2020. 8(12): p. 3938-3955.
52. Bag, M.A. and L.M. Valenzuela, Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. International Journal of Molecular Sciences, 2017. 18(8): p. 1422.
53. Li, K., et al., Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13(4): p. 573.
54. Li, W., et al., Polyethylene glycol modified magnetic nanoparticles for removal of heavy metal ions from aqueous solutions. Journal of Dispersion Science and Technology, 2019. 40(9): p. 1338-1344.
55. 洪世勳, 李亮三, and 陳文逸, 熱力學分析聚乙二醇在水合程序中結構變化 / 洪世勳撰. 2008, 撰者]: 桃園縣中壢市.
56. 科儀新知 = Instruments today. 科儀新知 = Instruments today., 1984.
57. Nasiruddin, M., et al., Solvation Effects on the Electrical Properties of a Microfluid-Assisted Solution Field-Effect Transistor with Atomically Thin MoS2 Layers. ACS Applied Nano Materials, 2023. 6(16): p. 15175-15182.
58. Malmberg, C. and A. Maryott, Dielectric Constant of Water from 00 to 1000 C. Journal of research of the National Bureau of Standards, 1956. 56(1): p. 1-8.
59. Akerlof, G., Dielectric constants of some organic solvent-water mixtures at various temperatures. Journal of the American Chemical Society, 1932. 54(11): p. 4125-4139.
60. Hung, H.-Y., et al., Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry. Analytical Methods, 2012. 4(11): p. 3631-3637.
61. 楊詠淇 and 陳文逸, 場效應電晶體使用不同閘極與聚乙二醇改質對於不同鹽濃度緩衝液影響pH量測之研究 / 楊詠淇著. 2023, 撰者: 桃園市中壢區.
62. Li, J., The Mechanics and Physics of Defect Nucleation. MRS Bulletin, 2007. 32(2): p. 151-159.
63. Kaisti, M., Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics, 2017. 98: p. 437-448.
64. Vançan, S., E.A. Miranda, and S.M.A. Bueno, IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochemistry, 2002. 37(6): p. 573-579.
65. Alberti, G., et al. Deferoxamine-Based Materials and Sensors for Fe(III) Detection. Chemosensors, 2022. 10, DOI: 10.3390/chemosensors10110468.
66. Cennamo, N., et al., A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III). Sensors, 2014. 14(3): p. 4657-4671.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明