博碩士論文 111223043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.133.118.13
姓名 王筠昕(Yun-Xin Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三苯胺(TPA)及環戊烷二噻吩(CDT)衍生物之電洞傳輸層材料開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本研究成功地開發出數種有機光電材料,並將其作為自組裝單分子層 (SAMs)沉積在 NiOx 薄膜上,用於錫鈣鈦礦太陽能電池(TPSCs)。
第一系列以 (triphenylamine, TPA)為核心,並於核心一端接上推電子基團為末端帶有甲氧基的三苯胺,另一端接上拉電子基丙二腈 (malononitrile)、氰乙酸乙烯基 (ethyl cyanoacetate)、氰甲基磷酸二乙酯 (diethyl cyanomethylphosphonate) 及 氰甲基膦酸 (cyanomethyl phosphonic acid)作為錨定基團。此外引入噻吩來延長共軛系統及外掛不同數量的推電子基團,以調控材料能階及增加分子內電荷轉移,開發一系列有機電洞傳輸層材料 (分子結構如下圖所示) 應用於錫鈣鈦礦太陽能電池,並以自組裝的方式搭配 NiOx 製備元件。其中又以 TPA-T-CA (4)、4TPA-PE (5a) 及4TPA-PA (6a) 表現優異,目前效率分別為8.2%、9.1% 及 8.7%,與使用自組裝方法製造的錫鈣鈦礦太陽能電池的最高報導效率 8.3% 相比,已有優異的表現,目前元件效率仍在優化中,期望效率能有更高的突破。
第二系列利用具硫鏈之環戊烷二噻吩衍生物 (CDT)作為核心,並於核心一端接上推電子基團為末端帶有甲氧基的三苯胺 (TPA),另一端接上拉電子基丙二腈 (MN)、氰乙酸乙烯基 (CA)、氰甲基膦酸二乙酯 (PE)及氰甲基膦酸 (PA)作為錨定基團,以調控分子能階及增加分子內電荷轉移,最後在核心引入不同長度之硫鏈,以增強分子間的作用力及溶解度,開發一系列有機電洞傳輸層材料 (分子結構如下圖所示),應用於錫鈣鈦礦太陽能電池中並以自主裝的方式搭配 NiOx 製備元件,其效率分別為 8.03%、8.41%、4.54% 及 5.15%。與目前使用自組裝方式所製備的錫鈣鈦礦太陽能電池最高報導效率 8.3% 相比,已有優異的表現。
摘要(英) This study successfully developed several organic photoelectronic materials, employing them as self-assembled monolayers (SAMs) deposited on NiOx film for tin perovskite solar cells (TPSCs).
In the first series, developed primarily based on TPA as the core, one end of the core was functionalized with dimethoxy-substituted triphenylamine as a terminal electron-donating group, while the other end was modified with electron-withdrawing groups: malononitrile (MN), ethyl cyanoacetate (CA)、diethyl cyanomethyl phosphonate (PE) and cyanomethyl phosphonic acid (PA) as anchoring groups. Additionally, thiophene units were incorporated to extend the conjugation length, and various electron-donating groups were attached to regulate the energy level of the materials and enhance the intramolecular charge transfer effect. Development of a series of organic optoelectronic materials. Among these, TPA-T-CA (4), 4TPA-PE (5a), and 4TPA-PA (6a) SAM-based TPSC devices exhibited promising efficiencies of 8.2%, 9.1%, and 8.7%, respectively. These outstanding results exceeded the highest reported efficiency of 8.3% in TPSCs. Further optimization of these series is ongoing.
The second series, developed primarily based on Cyclopentane dithiophene (CDT)as the core, with one end of the core functionalized with dimethoxy-substituted triphenylamine as a terminal electron-donating group, and the other end modified with electron-withdrawing groups: malononitrile (MN), ethyl cyanoacetate (CA)、diethyl cyanomethyl phosphonate (PE) and cyanomethyl phosphonic acid (PA) as anchoring groups, various electron-donating groups were attached to regulate the energy level of the materials and enhance the intramolecular charge transfer effect. Subsequently, different lengths of thioalkyl chains were attached to the core to enhance intermolecular interactions and solubility. This aimed to develop novel optoelectronic materials with NiOx for tin perovskite solar cells, fabricated into devices via self-assembly. These outstanding results exceeded the highest reported efficiency of 8.3% in TPSCs.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸層材料
關鍵字(英) ★ Perovskite Solar Cell
★ hole-transporting materials
論文目次 摘 要 VI
Abstract VIII
謝 誌 XI
目錄 XII
List of Figures XX
List of Schemes XXIV
List of Tables XXVI
附錄目錄 XXVII
第一章、緒論 1
第一節、前言 2
第二節、太陽能電池之概論 3
1-2-1矽晶太陽能電池 6
1-2-2無機化合物半導體太陽能電池 7
1-2-3混合式薄膜 8
第三節、鈣鈦礦太陽能電池 9
第四節、電池參數介紹 16
第五節、研究動機 20
第二章、實驗部分 30
第一節、化合物名稱對照 31
第二節、實驗藥品 36
第三節、實驗儀器 39
第四節、合成步驟 41
4-Methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline (12) 41
4-Methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline (13) 42
5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (14) 42
2-((5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)methylene)malononitrile (1) 43
diethyl (E)-(2-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonate (15) 44
(E)-(2-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonic acid (2) 45
4-bromo-N,N-diphenylaniline (16) 46
N,N-diphenyl-4-(tributylstannyl)aniline (17) 46
5-(4-(diphenylamino)phenyl)thiophene-2-carbaldehyde (18) 47
5-(4-(bis(4-bromophenyl)amino)phenyl)thiophene-2-carbaldehyde (19) 48
5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophene-2-carbaldehyde (20) 48
5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophene-2-carbaldehyde (21) 49
2-((5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)methylene)malononitrile / TPA-T-MN (3) 50
(Z)-3-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid / TPA-T-CA (4) 51
diethyl(E)-(2-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonate (5) 51
(E)-(2-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonic acid (6) 52
5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-4-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (22) 54
2-((5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-4-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)methylene)malononitrile / 3TPA-MN (3a) 55
(Z)-3-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-4-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid / 3TPA-CA (4a) 55
diethyl(E)-(2-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-4-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonate (5a) 56
(E)-(2-(5-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-4-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-1-cyanovinyl)phosphonic acid (6a) 57
3,3′-dibromo-2,2′-bithiophene (23) 58
4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-one (24) 59
4H-cyclopenta[2,1-b:3,4-b′]dithiophene (25) 59
4-(bis((2-ethylhexyl)thio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (26) 60
4-(bis((2-ethylhexyl)thio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (27) 60
4-(bis((2-ethylhexyl)thio)methylene)-6-bromo-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (28) 61
4-(bis((2-ethylhexyl)thio)methylene)-6-bromo-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (29) 62
2-((4-(bis((2-ethylhexyl)thio)methylene)-6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)methylene)malononitrile (7) 63
4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (30) 64
4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (31) 64
4-(bis(butylthio)methylene)-6-bromo-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (32) 65
6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde (33) 66
2-((6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)methylene)malononitrile (8) 67
(E)-3-(6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-2-cyanoacrylic acid (9) 68
diethyl(E)-(2-(6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-1-cyanovinyl)phosphonate (34) 69
(E)-(2-(6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(bis(butylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-1-cyanovinyl)phosphonic acid (10) 70
2,3-dibromothiophene (35) 71
2-(5-bromothiophen-2-yl)-1,3-dioxolane (36) 71
(5-(1,3-dioxolan-2-yl)thiophen-2-yl)tributylstannane (37) 72
[2,2′:3′,2′′-terthiophene]-5,5′′-dicarbaldehyde (38) 73
5′-bromo-[2,2′:3′,2′′-terthiophene]-5,5′′-dicarbaldehyde (39) 73
tris(4-bromophenyl)amine (40) 74
N4-(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)-N4-(4-bromophenyl)-N4′,N4′-bis(4-methoxyphenyl)-[1,1′-biphenyl]-4,4′-diamine (41) 74
N4-(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)-N4′,N4′-bis(4-methoxyphenyl)-N4-(4-(tributylstannyl)phenyl)-[1,1′-biphenyl]-4,4′-diamine (42) 75
5′-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-[2,2′:3′,2′′-terthiophene]-5,5′′-dicarbaldehyde (43) 76
2,2′-((5′-(4-(bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)amino)phenyl)-[2,2′:3′,2′′-terthiophene]-5,5′′-diyl)bis(methaneylylidene))dimalononitrile (11) 77
第三章、結果與討論 78
光物理及分子特性探討 79
第四章、結論 103
第五章、附錄 106
第六章、參考文獻 166
參考文獻 1. h5ttps://zh.wikipedia.org/zh-tw/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0
2. Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Progress in Photovoltaics 2023, 31 (1), 3-16.
3. https://www.nrel.gov/pv/cell-efficiency.html,%20Best%20Research-Cell%20Efficiencies.%202023.
4. Green, M. A.; Wenham, S. R.; Sproul, A. B.; Edmiston, S. A., Progress in Photovoltaics 1995, 3 (5), 333.
5. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25 (5), 676-677.
6. Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nature materials 2011, 11 (1), 44-48.
7. Wang, J.; Wang, S.; Li, X.; Zhu, L.; Meng, Q.; Xiao, Y.; Li, D. Chem.Commum. 2014, 50, 5829-5832
8. Kang, M. S.; Sung, S. D.; Choi, I. T.; Kim, H.; Hong, M.; Kim, J.; Lee, W. I.; Kim, H. K. ACS Appl. Mater. Interfaces. 2015,7,22213-22217
9. Kayes, B. M.; Nie, H.; Twist, R.; Spruytte, S. G.; Reinhardt, F.; Kizilyalli, I. C.; Higashi, G. S., 2011 37th IEEE Photovoltaic Specialists Conference 2011, 000004-000008.
10. Hollemann, C.; Haase, F.; Rienäcker, M.; Barnscheidt, V.; Krügener, J.; Folchert, N.; Brendel, R.; Richter, S.; Großer, S.; Sauter, E.; Hübner, J.; Oestreich, M.; Peibst, R. Sci Rep 2020, 10 (1), 658.
11. Mufti, N.; Amrillah, T.; Taufiq, A.; Aripriharta, S.; Diantoro, M.; Nur, Z.H. Solar Energy. 2020,207,1146–1157
12. https://zh.wikipedia.org/zh-tw/%E9%88%A3%E9%88%A6%E7%A4%A6,%20Perovskite.%202023.
13. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photonics 2014, 8 (7), 506-514.
14. Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R. A.; Dunfield, S. P.; Xiao, C.; Scheidt, R. A.; Kuciauskas, D.; Wang, X.; Hautzinger, M. P.; Tirawat, R.; Beard, M. C.; Fenning, D. P.; Berry, J. J.; Larson, B. W.; Yan, Y.; Zhu, K., Nature 2022, 611 (7935), 278-283.
15. Chen, B.; Yang, M.; Priya, S.; Zhu, K. The journal of physical chemistry letters , 2016, 7 (5), 905-917.
16. Zhao, X.; Park, N.G. Photonics 2015, 2, 1139-1151
17. Diau, E. W. G.; Jokar, E.; Rameez, M. ACS Energy Letters 2019, 4 (8), 1930-1937.
18. Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chemical reviews 2019, 119 (5), 3418-3451.
19. Suragtkhuu, S.; Sunderiya, S.; Myagmarsereejid, P.; Purevdorj, S.; Bati, A. S. R.; Bold, B.; Zhong, Y. L.; Davaasambuu, S.; Batmunkh, M. Advanced Energy Materials 2023, 13 (12), 1-24.
20. Simona, F.; Filippo, D. A.; Mohammad, K.; Nazeeruddin,; Michael Grätzel. J. Phys. Chem. C 2011, 115, 23126–23133
21. Khan, D.; Liu, X.; Qu, G.; Nath, A. R.; Xie, P.; Xu, Z. X. Small 2023, 19 (11), e2205926.
22. Zhou, X.; Qiu, L.; Fan, R.; Ye, H.; Tian, C.; Hao, S.; Yang, Y., Journal of Power Sources 2020, 473 (1). 29. Guo, P.; Dong, J.; Xu, C.; Yao, Y.; You, J.; Bian, H.;
23. Guo, Pp.; Dong, j.; Xu, C.; Yao, Y.; You, J.; Bian, H.; Zeng, W.; Zhou, G.; He, X. Wang, M.; Zhou, X.; Wang, M.; Song, Q. J. Mater. Chem. A 2023, 11, 7246-7255
24. https://www.materialsnet.com.tw/DocView.aspx?id=45258
25. Wang, M.; Wang, H.; Li, W.; Hu, X.; Sun, K.; Zang, Z. J. Mater. Chem. A, 2019, 7, 26421–26428
26. Kim, S. Y.; Cho, S.J.; Byeon, S. E.; He, E.; Yoon, H.J. Adv. Energy Mater. 2020, 2002606
27. Hu, L.; Li, M.; Yang, K.; Xiong, Z.; Yang, B.; Wang, M.; Tang, X.; Zang, Z.; Liu, X.; Li, B.; Xiao, Z.; Lu, S.; Gong, H.; Ouyang, J.; Sun, K. J. Mater. Chem. A 2018, 6 (34), 16583-16589.
28. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köthen, E.; Kasparaviius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V. Energy & Environmental Science 2019, 12 (11), 3356-3369.
29. Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chemistry of Materials 2011, 23 (3), 456-469.
30. Brabec, C. J.; Cravino, A.;Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. H.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11,374-380
31. Zou, Y.; Dong, Y.; Sun, C.; Wu, Y.; Yang, H.; Cui, C.; Li, F. Chem. Mater. 2019, 31, 11, 4222–4227
32. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.; Facchetti, A.; Guo, X. Journal of the American Chemical Society. 2020, 142 (39), 16632-16643.
33. J, F, Hai.; H, Wu.; X, X, Yin.; J, X, Song.; L, Hu.; Y, Z, Jin.; L, Li.; Z, Su.; Z, G, Xu.; H, Wang.; Z, F, Li. Adv. Funct. Mater. 2021, 31, 2105458
34. Zhang, S.; Wu, R.; Mu, C.; Wang, Y.; Han, L.; Wu, Y.; Zhu, W.-H. ACS Materials Letters. 2022, 4 (10), 1976-1983.
35. Chang, M.; Zhang, Y.; Lu, B. S.; Sui, D.; Wang, F.; Wang, J.; Yang, Y.; Kan, B. Chemical Engineering Journal. 2022, 427, 131473
36. Afraj, S. N.; Kuan, C. H.; Lin, J. S.; Ni, J. S.; Velusamy, A.; Chen, M. C.; Diau, E. W. G. Advanced Functional Materials. 2023, 33 (17), 1-10.
37. C, Wang.; Y, Yang.; L, L, Lin.; B, W, Xu.; J, H, Hou.; Y, F, Deng.; Y, H, Geng. Angewandte Chemie. 2023, 62, 35
38. Ezhumalai, Y.; Lee, B.; Fan, M.-S.; Harutyunyan, B.; Prabakaran, K.; Lee, C.-P.; Chang, S. H.; Ni, J.-S.; Vegiraju, S.; Priyanka, P.; Wu, Y.-W.; Liu, C.-W.; Yau, S.; Lin, J. T.; Wu, C.-G.; Bedzyk, M. J.; Chang, R. P. H.; Chen, M.-C.; Ho, K.-C.; Marks, T. J. J. Mater. Chem. A. 2017, 5, 12310.
39. Lin, F.-S.; Priyanka, P.; Fan, M.-S.; Vegiraju, S.; Ni, J.-S.; Wu, Y.-C.; Li, Y.-H.; Lee, G.-H.; Ezhumalai, Y.; Jeng, R.-J.; Chen, M.-C. Ho, K.-C. J. Mater. Chem. C. 2020, 8, 15322.
40. Velusamy, A.; Yau, S.; Liu, C. L.; Ezhumalai, Y.; Kumaresan, P.; Chen, M. -C. J. Chin. Chem. Soc. 2023; 70:2046–2063.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明