博碩士論文 111324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.216.251.190
姓名 蔡威霆(Wei-Ting Cai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以部分磷酸根甲基化改質去氧核醣核酸之寡核苷酸透過中孔洞二氧化矽奈米粒子增強細胞內miR-21抑制之研究
(Enhanced Intracellular miR-21 Suppression via Partially Phosphate-methylated DNA Oligonucleic Acid Using Mesoporous Silica Nanoparticles)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 微小RNA(microRNA, miRNA)是一種短小的非編碼RNA分子,其主要功能是在細胞內調控基因的表達。其中,miR-21在癌細胞中的高表達與促進細胞增殖、抑制細胞凋亡、促進侵襲和轉移等癌症相關特徵有很大的關聯性。因此針對miR-21的治療策略在癌症治療中具有重要意義。
為了有效抑制miR-21在癌細胞中的表達,本研究使用反義寡核苷酸(Antisense oligonucleotides, ASOs)作為癌細胞治療手段。反義寡核苷酸是一種透過靶向特定RNA序列來調控RNA表達的分子,然而,反義寡核苷酸存在的限制包括與其靶向RNA的結合力、在體內的分布和代謝以及易被酶分解等問題。因此,我們開發一種ASOs的類型,稱為中性化DNA(Neutralized DNA, nDNA),其磷酸骨架上含有位點特異性甲基磷酸三酯(Methyl phosphotriester, MPTE)鍵,將帶負電荷的DNA磷酸二酯轉變為中性化的MPTE,並且可以設計在任意位置。nDNA減少了磷酸骨架上的負電荷,從而減少了ASO與RNA雙鏈之間的靜電排斥力,這提高了雜交親和力和雙鏈穩定性。雖然nDNA以前已被作為靈敏核苷酸測序探針(Probe)應用於聚合酶連鎖反應(Polymerase chain reaction, PCR)中,可在DNA或RNA樣本中辨別和定量特定的核苷酸序列,但nDNA在細胞內對RNA的結合與調控和基因治療中的潛力仍然未被充分探索。本研究主要在評估nDNA作為ASO 在抑制細胞內miR-21基因表達及下游基因之調控能力。
在更具體的實驗設計中,本研究對nDNA進行了多種甲基化修飾,並評估了不同修飾位置對nDNA-ASO結合親和力和穩定性的影響。研究發現,當MPTE修飾位於N4-mid(修飾四個甲基在中間)位置時,nDNA對miR-21的抑制效果最佳,抑制持續時間也長達72小時。這表明精確定位的甲基化修飾不僅能提高nDNA的靶向能力,還能增強其在細胞內的穩定性。
本研究證明透過調整MPTE的位置,部分甲基化的nDNA裝載到中孔洞二氧化矽奈米粒子(Mesoporous Silica Nanoparticle, MSN)上,可以有效地抑制細胞內的miRNA表達,更可以進一步在結腸癌細胞HCT116中調控下游的信使核糖核酸(messenger RNA, mRNA)表達。此外,在72小時內裝載nDNA ASO的MSN在降低miR-21水平方面,比裝載未修飾的DNA ASO的MSN表現出更高的效力。相較於未修飾的DNA ASO,nDNA ASO也導致了下游腫瘤抑制基因PTEN和PDCD4的mRNA水平增加。
本研究發現,抑制miR-21後,下游的腫瘤抑制基因PDCD4和PTEN的mRNA表達顯著增強,這不僅抑制了腫瘤細胞的增殖,還促進了細胞的凋亡。本研究結果強調了nDNA在基因治療中的潛力,特別是透過精準調整甲基化位置來進行的癌症治療。這些結果顯示,nDNA不僅可以用於RNA調控,還能在癌症治療中發揮重要作用,提供了一種新的治療策略。
整體來說,本研究顯示了中性化DNA在細胞內RNA調控和基因治療中的巨大潛力,尤其在癌症治療中,透過精準調整甲基化位置,可以顯著提高治療效果。本研究為未來的體內實驗提供了強而有力的基礎,並為開發新型癌症治療方法提供了重要的理論支持。
摘要(英) MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in regulating gene expression within cells. miR-21 is highly expressed in cancer cells and is significantly associated with cancer-related characteristics such as promoting cell proliferation, inhibiting apoptosis, and enhancing invasion and metastasis. Therefore, therapeutic strategies targeting miR-21 hold great promise for cancer treatment.
To effectively suppress the expression of miR-21 in cancer cells, this study employs antisense oligonucleotides (ASOs) as a therapeutic approach. ASOs are molecules that regulate RNA expression by targeting specific RNA sequences. However, limitations of ASOs include their binding affinity to target RNA, distribution and metabolism within the body, and enzymatic degradation. To address these issues, we developed a type of ASO called neutralized DNA (nDNA), which incorporates site-specific methyl phosphotriester (MPTE) linkages on its phosphate backbone, converting the negatively charged DNA phosphodiester into a neutral MPTE at designated positions. The nDNA reduces the negative charge on the phosphate backbone, thereby decreasing electrostatic repulsion between the ASO and RNA duplex, enhancing hybridization affinity and duplex stability.
Although nDNA has previously been used as a sensitive nucleotide sequencing probe in polymerase chain reaction (PCR) to identify and quantify specific nucleotide sequences in DNA or RNA samples, its potential for binding and regulating RNA within cells and its role in gene therapy remain underexplored. This study focuses on evaluating the ability of nDNA as an ASO to inhibit miR-21 gene expression and regulate downstream genes within cells.
In more specific experimental designs, this study introduced various methylation modifications and assessed the impact of different modification sites on the binding affinity and stability of nDNA-ASO. The study found that when MPTE modification was in the middle position, nDNA exhibited optimal miR-21 inhibition, with the effect lasting up to 72 hours. This suggests that precise localization of methylation not only enhances the targeting capability of nDNA but also improves its stability within cells.
This study demonstrated that by adjusting the position of MPTE, partially and intermediately methylated nDNA loaded onto mesoporous silica nanoparticles (MSNs) effectively inhibited miRNA expression within cells and further regulated downstream messenger RNA (mRNA) expression in colon cancer cells (HCT116). Additionally, over 72 hours, nDNA ASO-loaded MSNs showed a greater reduction in miR-21 levels compared to unmodified DNA ASO-loaded MSNs. The miR-21 knockdown by nDNA ASO also resulted in increased mRNA levels of downstream tumor suppressor genes PTEN and PDCD4 compared to unmodified DNA ASO.
This study found that inhibiting miR-21 levels with nDNA ASO significantly enhanced the mRNA expression of downstream tumor suppressor genes PDCD4 and PTEN, indirectly suppressing cancer cell growth. These results highlight the potential of nDNA in cancer gene therapy, through precise methylation, indicating its role in RNA regulation, offering a new therapeutic strategy.
Overall, this study demonstrates the significant potential of nDNA in cancer gene therapy. Precise methylation can significantly improve RNA knockdown efficacy. This research provides a strong foundation for future in vivo experiments and offers an alternative strategy for gene cancer treatments.
關鍵字(中) ★ 反義寡核苷酸
★ 寡核苷酸修飾
★ 基因沉默
關鍵字(英) ★ antisense oligonucleotides
★ oligonucleotide modifications
★ gene silencing
論文目次 摘要 i
ABSTRACT iv
致謝 vi
目錄 viii
圖目錄 xii
表目錄 xvii
第一章 緒論 1
第二章 文獻回顧 5
2.1 癌症及基因突變 5
2.1.1 癌症概述 5
2.1.2 DNA突變及正常細胞癌變 8
2.2 基因沉默 11
2.2.1 在癌細胞中的蛋白表達 11
2.2.2 mRNA 轉譯機制 14
2.2.3 miRNA與基因調控 17
2.2.4 miR-21在癌細胞中的角色 20
2.2.5 在癌細胞中由miR-21調控的基因 22
2.3 反義寡核苷酸治療 25
2.3.1 反義寡核苷酸對基因調控 25
2.3.2 反義寡核苷酸的化學改質 29
2.3.3 Neutralized DNA (nDNA) 34
2.4 中孔洞二氧化矽奈米粒子 (MSN) 36
2.4.1 中孔洞二氧化矽奈米粒子簡介 36
2.4.2 功能化中孔洞二氧化矽奈米粒子 39
第三章 實驗方法與儀器設備 41
3.1 實驗藥品 41
3.1.1 細胞培養 41
3.1.2 細胞轉染 41
3.1.3 核酸萃取 42
3.1.4 MSN和Probe-loaded MSN表徵 42
3.1.5 細胞毒性分析 42
3.1.6 釋放實驗 43
3.1.7 洋菜凝膠電泳(Agarose gel) 43
3.1.8模擬生物體內 miRNA 雜交 43
3.1.9 miRNA 逆轉錄反應 44
3.1.10 即時聚合酶鏈式反應 44
3.2 儀器設備 45
3.3 實驗方法 46
3.3.1細胞解凍 46
3.3.2 細胞培養 47
3.3.3 細胞冷凍 48
3.1.4 序列設計 49
3.3.5 MSN和Probe-loaded MSN表徵 50
3.3.6 細胞攝取 51
3.3.7 細胞毒性實驗 52
3.3.8 MSN 裝載效率 53
3.3.9 洋菜凝膠電泳(Agarose gel) 54
3.3.10 Probe-loaded MSN的血清穩定性 55
3.3.11 釋放實驗 56
3.1.12 模擬生物體內 miRNA 雜交 57
3.3.13 細胞萃取 59
3.1.14 逆轉錄及時聚合酶鍊式反應(qRT-PCR) 61
3.3.15 mRNA表達評估 67
第四章 實驗結果與討論 68
4.1 在模擬人類血漿中 nDNA 對 miR-21 逆轉錄的抑制 68
4.2 中孔洞二氧化矽奈米粒子吸附能力研究 73
4.3 細胞攝取 76
4.4 MSN細胞毒性 79
4.5 ASO Probes在MSN-PEG/PEI中裝載效率 81
4.6 ASO-loaded MSN在血清中的穩定性 83
4.7 透過反義核酸探針抑制 HCT116 中的miR-21表達 85
4.8 PDCD4 和 PTEN mRNA 透過 miR-21 抑制在 HCT116 細胞中上調 89
4.9 癌細胞生長抑制 92
第五章 結論 95
第六章 未來展望 97
第七章 參考文獻 98
參考文獻 1. Abhijit Bandyopadhyay , T.D., Sabina Yeasmin, Nanoparticles in Lung Cancer Therapy - Recent Trends. 2015.
2. Marcos Santos. All you need to know about cancer. 2023.
3. Moon, J., et al., DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 2023. 24(5): p. 4741.
4. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 28.
5. Das, S., et al., Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors, 2024. 24(1): p. 37.
6. Tan, S.C., et al., Management of Next-Generation Sequencing in Precision Medicine, in Regionalized Management of Medicine, H. Shen, et al., Editors. 2022, Springer Nature Singapore: Singapore. p. 149-176.
7. Sarkar, S., et al. Cancer Development, Progression, and Therapy: An Epigenetic Overview. International Journal of Molecular Sciences, 2013. 14, 21087-21113 DOI: 10.3390/ijms141021087.
8. Datta, N., et al., Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells, 2021. 10(1): p. 46.
9. GM., C., The Cell: A Molecular Approach. 2nd edition. 2000.
10. Gregory, G.L. and I.M. Copple, Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. Mol Ther Nucleic Acids, 2023. 31: p. 211-223.
11. Tang, Y.C. and A. Amon, Gene copy-number alterations: a cost-benefit analysis. Cell, 2013. 152(3): p. 394-405.
12. Queremel Milani, D.A. and P. Tadi, Genetics, Chromosome Abnormalities, in StatPearls. 2024, StatPearls Publishing
Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
13. Liu, Z.-L., et al., Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 198.
14. Suresh, S. and K.A. O′Donnell, Translational Control of Immune Evasion in Cancer. Trends Cancer, 2021. 7(7): p. 580-582.
15. Ma, F., K. Laster, and Z. Dong, The comparison of cancer gene mutation frequencies in Chinese and U.S. patient populations. Nature Communications, 2022. 13(1): p. 5651.
16. Suzanne Clancy, P.D.W.B., Ph.D. . Translation: DNA to mRNA to Protein. 2008; Available from: https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/.
17. Otto, T. and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 2017. 17(2): p. 93-115.
18. Chen, L., S. Liu, and Y. Tao, Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther, 2020. 5(1): p. 90.
19. Zhang, J., et al., The effects of the tumor suppressor gene PTEN on the proliferation and apoptosis of breast cancer cells via AKT phosphorylation. Transl Cancer Res, 2023. 12(7): p. 1863-1872.
20. Huangfu, W.C. and S.Y. Fuchs, Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer, 2010. 1(7): p. 725-34.
21. Yewale, C., et al., Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials, 2013. 34(34): p. 8690-707.
22. Dutta, H. and N. Jain, Post-translational modifications and their implications in cancer. Front Oncol, 2023. 13: p. 1240115.
23. Zhao, S., et al., Effects of the p16/cyclin D1/CDK4/Rb/E2F1 pathway on aberrant lung fibroblast proliferation in neonatal rats exposed to hyperoxia. Exp Ther Med, 2021. 22(4): p. 1057.
24. Qian, S., et al., The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol, 2022. 12: p. 985363.
25. Sarkar, S., et al., Cancer Development, Progression, and Therapy: An Epigenetic Overview. International Journal of Molecular Sciences, 2013. 14(10): p. 21087-21113.
26. Roos, D. and M. de Boer, Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2021. 1867(9): p. 166166.
27. Cerasuolo, A., et al., The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol, 2020. 8: p. 474.
28. Macfarlane, L.A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics, 2010. 11(7): p. 537-61.
29. Jiang, X., et al., The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 74.
30. Hong, J., K. Xu, and J.H. Lee, Biological roles of the RNA m(6)A modification and its implications in cancer. Exp Mol Med, 2022. 54(11): p. 1822-1832.
31. Kim, H.J., Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules, 2019. 9(11).
32. O′Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018. 9.
33. Nishihara, T., et al., miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res, 2013. 41(18): p. 8692-705.
34. Valinezhad Orang, A., R. Safaralizadeh, and M. Kazemzadeh-Bavili, Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics, 2014. 2014: p. 970607.
35. Visone, R. and C.M. Croce, MiRNAs and cancer. Am J Pathol, 2009. 174(4): p. 1131-8.
36. Reddy, K.B., MicroRNA (miRNA) in cancer. Cancer Cell International, 2015. 15(1): p. 38.
37. Zheng, W., et al., MicroRNA‑21: A promising biomarker for the prognosis and diagnosis of non‑small cell lung cancer (Review). Oncol Lett, 2018. 16(3): p. 2777-2782.
38. Farazi, T.A., et al., MicroRNAs in human cancer. Adv Exp Med Biol, 2013. 774: p. 1-20.
39. Bautista-Sánchez, D., et al., The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Ther Nucleic Acids, 2020. 20: p. 409-420.
40. Rhim, J., et al., From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells, 2022. 11(18).
41. Feng, Y.H. and C.J. Tsao, Emerging role of microRNA-21 in cancer. Biomed Rep, 2016. 5(4): p. 395-402.
42. Surina, et al., miR-21 in Human Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2021. 8.
43. Xu, X., et al., miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics, 2014. 46(21): p. 789-97.
44. Wang, Q. and H.S. Yang, The role of Pdcd4 in tumour suppression and protein translation. Biol Cell, 2018.
45. Chen, C.Y., et al., PTEN: Tumor Suppressor and Metabolic Regulator. Front Endocrinol (Lausanne), 2018. 9: p. 338.
46. Khan, K.H., et al., Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer, 2013. 32(5): p. 253-65.
47. Chalhoub, N. and S.J. Baker, PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol, 2009. 4: p. 127-50.
48. Milella, M., et al., PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol, 2015. 5: p. 24.
49. Ghosh, A., et al., Fine-tuning miR-21 expression and inhibition of EMT in breast cancer cells using aromatic-neomycin derivatives. Mol Ther Nucleic Acids, 2022. 27: p. 685-698.
50. Daoud, A., et al., MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer, 2019. 19.
51. Chery, J., RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J, 2016. 4(7): p. 35-50.
52. Dhuri, K., et al., Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. Journal of Clinical Medicine, 2020. 9: p. 2004.
53. Gudanis, D., et al., Formation of an RNA Quadruplex-Duplex Hybrid in Living Cells between mRNA of the Epidermal Growth Factor Receptor (EGFR) and a G-Rich Antisense Oligoribonucleotide. Cells, 2020. 9(11).
54. Kole, R., A.R. Krainer, and S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov, 2012. 11(2): p. 125-40.
55. Hua, Y. and A.R. Krainer, Antisense-mediated exon inclusion. Methods Mol Biol, 2012. 867: p. 307-23.
56. Esau, C.C., Inhibition of microRNA with antisense oligonucleotides. Methods, 2008. 44(1): p. 55-60.
57. Davis, S., et al., Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res, 2006. 34(8): p. 2294-304.
58. Ulanova, M., A.D. Schreiber, and A.D. Befus, The Future of Antisense Oligonucleotides in the Treatment of Respiratory Diseases. BioDrugs, 2006. 20(1): p. 1-11.
59. Koshkin, A.A., et al., LNA (Locked Nucleic Acid):  An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
60. Wang, P.-H., et al., Sensitive and Specific MicroRNA In Situ Hybridization Using Partially Methylated Phosphotriester Antisense DNA Probes. GEN Biotechnology, 2022. 1(5): p. 447-455.
61. Jaramillo, L.Y., W. Henao, and M. Romero-Sáez, Synthesis and characterization of MCM-41–SBA-15 mixed-phase silica with trimodal mesoporous system and thick pore wall. Journal of Porous Materials, 2020. 27(6): p. 1669-1676.
62. Khaliq, N.U., et al., Mesoporous Silica Nanoparticles as a Gene Delivery Platform for Cancer Therapy. Pharmaceutics, 2023. 15(5).
63. Djayanti, K., et al., Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci, 2023. 24(7).
64. Zaharudin, N.S., et al., Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 2020. 24(3): p. 289-302.
65. Slowing, I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17: p. 1225-1236.
66. Pratiwi, F.W., et al., Chapter Six - The Bioimaging Applications of Mesoporous Silica Nanoparticles, in The Enzymes, F. Tamanoi, Editor. 2018, Academic Press. p. 123-153.
67. Dembélé, J., et al., Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2023. 15(1): p. 432-451.
68. Martínez Carmona, M., Y. Gun’ko, and M. Vallet-Regí, Mesoporous Silica Materials as Drug Delivery: “The Nightmare” of Bacterial Infection. Pharmaceutics, 2018. 10: p. 279.
69. Li, K., et al., Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13(4): p. 573.
70. Desai, D., et al., Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. International Journal of Nanomedicine, 2016. 11: p. 299—313.
71. Zakeri, A., et al., Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp, 2018. 9(1): p. 1488497.
72. Mitchell, M.J., et al., Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021. 20(2): p. 101-124.
73. Akinc, A., et al., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine, 2005. 7: p. 657-63.
74. Dembélé, J., et al., Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Appl Mater Interfaces, 2023. 15(1): p. 432-451.
75. Shashni, B., et al., Size-Based Differentiation of Cancer and Normal Cells by a Particle Size Analyzer Assisted by a Cell-Recognition PC Software. Biological and Pharmaceutical Bulletin, 2018. 41(4): p. 487-503.
76. Lim, L.P., et al., The microRNAs of Caenorhabditis elegans. Genes Dev, 2003. 17(8): p. 991-1008.
77. Liebl, K. and M. Zacharias, How global DNA unwinding causes non-uniform stress distribution and melting of DNA. PLOS ONE, 2020. 15(5): p. e0232976.
78. Hauser, P.V., et al. Nanotechnology, Nanomedicine, and the Kidney. Applied Sciences, 2021. 11, DOI: 10.3390/app11167187.
79. Fan, D., et al., Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 293.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2024-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明