參考文獻 |
1. Abhijit Bandyopadhyay , T.D., Sabina Yeasmin, Nanoparticles in Lung Cancer Therapy - Recent Trends. 2015.
2. Marcos Santos. All you need to know about cancer. 2023.
3. Moon, J., et al., DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 2023. 24(5): p. 4741.
4. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 28.
5. Das, S., et al., Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors, 2024. 24(1): p. 37.
6. Tan, S.C., et al., Management of Next-Generation Sequencing in Precision Medicine, in Regionalized Management of Medicine, H. Shen, et al., Editors. 2022, Springer Nature Singapore: Singapore. p. 149-176.
7. Sarkar, S., et al. Cancer Development, Progression, and Therapy: An Epigenetic Overview. International Journal of Molecular Sciences, 2013. 14, 21087-21113 DOI: 10.3390/ijms141021087.
8. Datta, N., et al., Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells, 2021. 10(1): p. 46.
9. GM., C., The Cell: A Molecular Approach. 2nd edition. 2000.
10. Gregory, G.L. and I.M. Copple, Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. Mol Ther Nucleic Acids, 2023. 31: p. 211-223.
11. Tang, Y.C. and A. Amon, Gene copy-number alterations: a cost-benefit analysis. Cell, 2013. 152(3): p. 394-405.
12. Queremel Milani, D.A. and P. Tadi, Genetics, Chromosome Abnormalities, in StatPearls. 2024, StatPearls Publishing
Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
13. Liu, Z.-L., et al., Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 198.
14. Suresh, S. and K.A. O′Donnell, Translational Control of Immune Evasion in Cancer. Trends Cancer, 2021. 7(7): p. 580-582.
15. Ma, F., K. Laster, and Z. Dong, The comparison of cancer gene mutation frequencies in Chinese and U.S. patient populations. Nature Communications, 2022. 13(1): p. 5651.
16. Suzanne Clancy, P.D.W.B., Ph.D. . Translation: DNA to mRNA to Protein. 2008; Available from: https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/.
17. Otto, T. and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 2017. 17(2): p. 93-115.
18. Chen, L., S. Liu, and Y. Tao, Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther, 2020. 5(1): p. 90.
19. Zhang, J., et al., The effects of the tumor suppressor gene PTEN on the proliferation and apoptosis of breast cancer cells via AKT phosphorylation. Transl Cancer Res, 2023. 12(7): p. 1863-1872.
20. Huangfu, W.C. and S.Y. Fuchs, Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer, 2010. 1(7): p. 725-34.
21. Yewale, C., et al., Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials, 2013. 34(34): p. 8690-707.
22. Dutta, H. and N. Jain, Post-translational modifications and their implications in cancer. Front Oncol, 2023. 13: p. 1240115.
23. Zhao, S., et al., Effects of the p16/cyclin D1/CDK4/Rb/E2F1 pathway on aberrant lung fibroblast proliferation in neonatal rats exposed to hyperoxia. Exp Ther Med, 2021. 22(4): p. 1057.
24. Qian, S., et al., The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol, 2022. 12: p. 985363.
25. Sarkar, S., et al., Cancer Development, Progression, and Therapy: An Epigenetic Overview. International Journal of Molecular Sciences, 2013. 14(10): p. 21087-21113.
26. Roos, D. and M. de Boer, Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2021. 1867(9): p. 166166.
27. Cerasuolo, A., et al., The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol, 2020. 8: p. 474.
28. Macfarlane, L.A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics, 2010. 11(7): p. 537-61.
29. Jiang, X., et al., The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 74.
30. Hong, J., K. Xu, and J.H. Lee, Biological roles of the RNA m(6)A modification and its implications in cancer. Exp Mol Med, 2022. 54(11): p. 1822-1832.
31. Kim, H.J., Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules, 2019. 9(11).
32. O′Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018. 9.
33. Nishihara, T., et al., miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res, 2013. 41(18): p. 8692-705.
34. Valinezhad Orang, A., R. Safaralizadeh, and M. Kazemzadeh-Bavili, Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics, 2014. 2014: p. 970607.
35. Visone, R. and C.M. Croce, MiRNAs and cancer. Am J Pathol, 2009. 174(4): p. 1131-8.
36. Reddy, K.B., MicroRNA (miRNA) in cancer. Cancer Cell International, 2015. 15(1): p. 38.
37. Zheng, W., et al., MicroRNA‑21: A promising biomarker for the prognosis and diagnosis of non‑small cell lung cancer (Review). Oncol Lett, 2018. 16(3): p. 2777-2782.
38. Farazi, T.A., et al., MicroRNAs in human cancer. Adv Exp Med Biol, 2013. 774: p. 1-20.
39. Bautista-Sánchez, D., et al., The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Ther Nucleic Acids, 2020. 20: p. 409-420.
40. Rhim, J., et al., From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells, 2022. 11(18).
41. Feng, Y.H. and C.J. Tsao, Emerging role of microRNA-21 in cancer. Biomed Rep, 2016. 5(4): p. 395-402.
42. Surina, et al., miR-21 in Human Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2021. 8.
43. Xu, X., et al., miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics, 2014. 46(21): p. 789-97.
44. Wang, Q. and H.S. Yang, The role of Pdcd4 in tumour suppression and protein translation. Biol Cell, 2018.
45. Chen, C.Y., et al., PTEN: Tumor Suppressor and Metabolic Regulator. Front Endocrinol (Lausanne), 2018. 9: p. 338.
46. Khan, K.H., et al., Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer, 2013. 32(5): p. 253-65.
47. Chalhoub, N. and S.J. Baker, PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol, 2009. 4: p. 127-50.
48. Milella, M., et al., PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol, 2015. 5: p. 24.
49. Ghosh, A., et al., Fine-tuning miR-21 expression and inhibition of EMT in breast cancer cells using aromatic-neomycin derivatives. Mol Ther Nucleic Acids, 2022. 27: p. 685-698.
50. Daoud, A., et al., MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer, 2019. 19.
51. Chery, J., RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J, 2016. 4(7): p. 35-50.
52. Dhuri, K., et al., Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. Journal of Clinical Medicine, 2020. 9: p. 2004.
53. Gudanis, D., et al., Formation of an RNA Quadruplex-Duplex Hybrid in Living Cells between mRNA of the Epidermal Growth Factor Receptor (EGFR) and a G-Rich Antisense Oligoribonucleotide. Cells, 2020. 9(11).
54. Kole, R., A.R. Krainer, and S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov, 2012. 11(2): p. 125-40.
55. Hua, Y. and A.R. Krainer, Antisense-mediated exon inclusion. Methods Mol Biol, 2012. 867: p. 307-23.
56. Esau, C.C., Inhibition of microRNA with antisense oligonucleotides. Methods, 2008. 44(1): p. 55-60.
57. Davis, S., et al., Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res, 2006. 34(8): p. 2294-304.
58. Ulanova, M., A.D. Schreiber, and A.D. Befus, The Future of Antisense Oligonucleotides in the Treatment of Respiratory Diseases. BioDrugs, 2006. 20(1): p. 1-11.
59. Koshkin, A.A., et al., LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
60. Wang, P.-H., et al., Sensitive and Specific MicroRNA In Situ Hybridization Using Partially Methylated Phosphotriester Antisense DNA Probes. GEN Biotechnology, 2022. 1(5): p. 447-455.
61. Jaramillo, L.Y., W. Henao, and M. Romero-Sáez, Synthesis and characterization of MCM-41–SBA-15 mixed-phase silica with trimodal mesoporous system and thick pore wall. Journal of Porous Materials, 2020. 27(6): p. 1669-1676.
62. Khaliq, N.U., et al., Mesoporous Silica Nanoparticles as a Gene Delivery Platform for Cancer Therapy. Pharmaceutics, 2023. 15(5).
63. Djayanti, K., et al., Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci, 2023. 24(7).
64. Zaharudin, N.S., et al., Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 2020. 24(3): p. 289-302.
65. Slowing, I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17: p. 1225-1236.
66. Pratiwi, F.W., et al., Chapter Six - The Bioimaging Applications of Mesoporous Silica Nanoparticles, in The Enzymes, F. Tamanoi, Editor. 2018, Academic Press. p. 123-153.
67. Dembélé, J., et al., Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2023. 15(1): p. 432-451.
68. Martínez Carmona, M., Y. Gun’ko, and M. Vallet-Regí, Mesoporous Silica Materials as Drug Delivery: “The Nightmare” of Bacterial Infection. Pharmaceutics, 2018. 10: p. 279.
69. Li, K., et al., Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13(4): p. 573.
70. Desai, D., et al., Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. International Journal of Nanomedicine, 2016. 11: p. 299—313.
71. Zakeri, A., et al., Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp, 2018. 9(1): p. 1488497.
72. Mitchell, M.J., et al., Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021. 20(2): p. 101-124.
73. Akinc, A., et al., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine, 2005. 7: p. 657-63.
74. Dembélé, J., et al., Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Appl Mater Interfaces, 2023. 15(1): p. 432-451.
75. Shashni, B., et al., Size-Based Differentiation of Cancer and Normal Cells by a Particle Size Analyzer Assisted by a Cell-Recognition PC Software. Biological and Pharmaceutical Bulletin, 2018. 41(4): p. 487-503.
76. Lim, L.P., et al., The microRNAs of Caenorhabditis elegans. Genes Dev, 2003. 17(8): p. 991-1008.
77. Liebl, K. and M. Zacharias, How global DNA unwinding causes non-uniform stress distribution and melting of DNA. PLOS ONE, 2020. 15(5): p. e0232976.
78. Hauser, P.V., et al. Nanotechnology, Nanomedicine, and the Kidney. Applied Sciences, 2021. 11, DOI: 10.3390/app11167187.
79. Fan, D., et al., Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 293. |