博碩士論文 110623021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.191.162.222
姓名 沈帛儒(Po-Ju Shen)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 運用合成孔徑雷達影像分析填海造陸的地基沉降
(Utilizing Synthetic Aperture Radar Imagery to Analyze Ground Subsidence in Land Reclamation Areas)
相關論文
★ 利用高光譜影像作異常物偵測★ 利用電腦自動化對數值高程模型作線形偵測
★ 利用多光譜影像的光譜與空間資訊結合數學型態學進行海洋油汙偵測★ 利用遙測影像自動萃取校正點
★ 新的影像融合演算法應用於多光譜遙測影像★ 利用固定式攝影機即時偵測土石流
★ 藉由電腦視覺自動偵測土石流★ 利用多層模型於全波形光達分析樹冠結構
★ 利用MHE對多光譜影像輻射校正並 應用於土石流變遷偵測★ 單發多收合成孔徑雷達模擬與實驗
★ 福爾摩沙五號衛星影像壓縮之實現★ 電磁散射模型於粗糙表面之研究
★ 超寬頻Ka波段於樹之散射量測及研究分析★ 立體影像對自動特徵點提取進行三維重建
★ Comparison of Change Detection Methods Based on the Spatial Chaotic Model for Synthetic Aperture Radar Imagery★ 利用遙測影像偵測碟型天線之方向
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 隨著城市化進程加快,填海造陸是許多國家擴展基礎設施建設的重要手段,然而,這些新生土地通常會面臨不同程度的地基沉降,可能影響建築物和設施的穩定性,對其安全性構成重大挑戰。傳統的沉降監測方法,如水準測量和GPS,雖然準確度備但成本也高,量測的範圍亦有限,且由於地表變形常是不規則的起伏,因此會需要透過大量的測站佈設,才能達到有效的監測成果。
合成孔徑雷達(SAR)技術能夠提供大範圍、高頻率和高精度的地表變形監測數據,由於其不受天候限制的特性,可達到全天時的觀測條件。本研究運用短基線測量法(SBAS)的方式進行影像處理,蒐整海上機場1年內的Sentinel-1雷達影像數據,並以ASF Vertex 的HyP3平台先行進行干涉處理(InSAR),並透過MintPy開源程式進行影像數值的分析,以得出目標區域的沉降量。
實驗結果顯示,運用短基線測量法所分析出的數值,與機場官方所發佈的數據幾乎吻合,且成果能以視覺化的方式呈現,或以Google Earth等方式開啟,讓使用者能針對感興趣的區域直觀式地進行查找,使分析出的數據更容易理解。
本研究旨在探索SAR影像在填海造陸區域地基沉降監測中的應用潛力。通過精確監測和分析沉降數據,可以提前預警潛在的工程風險,並運用SAR影像分析技術,系統性地評估填海造陸區域的地基沉降情況,以期為相關工程和規劃提供科學依據,並為城市規劃和基礎設施建設提供重要依據。
摘要(英) With the acceleration of urbanization, land reclamation has become an important means for many countries to expand infrastructure construction. However, these newly reclaimed lands often face varying degrees of ground subsidence, which can affect the stability of buildings and facilities, posing significant safety challenges. Traditional subsidence monitoring methods, such as leveling surveys and GPS, while accurate, are costly and limited in scope. Moreover, because ground deformation is often irregular, effective monitoring requires a large number of measurement stations.
Synthetic Aperture Radar (SAR) technology can provide extensive, high-frequency, and high-precision ground deformation monitoring data. Its all-weather observation capability makes it an invaluable tool. This study uses the Small Baseline Subset (SBAS) method for image processing, collecting one year of Sentinel-1 radar imagery of offshore airports. Initial interferometric processing (InSAR) is conducted using the HyP3 platform, followed by numerical analysis of the imagery through the MintPy open-source program to derive subsidence amounts in the target area.
The experimental results show that the values analyzed using the SBAS method closely match the data distributed by the airport authorities. These results can be visualized and opened in applications such as Google Earth, allowing users to intuitively explore areas of interest, making the analyzed data easier to understand.
This study aims to explore the potential of SAR imagery in monitoring ground subsidence in land reclamation areas. By precisely monitoring and analyzing subsidence data, potential engineering risks can be identified early. Utilizing SAR imagery analysis technology, the study systematically evaluates the ground subsidence conditions in land reclamation areas, providing scientific evidence for related engineering and planning, and offering critical support for urban planning and infrastructure construction.
關鍵字(中) ★ 合成孔徑雷達
★ 填海造陸
★ 地基沉降
★ 短基線測量
關鍵字(英) ★ SAR
★ Land Reclamation
★ Ground Subsidence
★ SBAS
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 x
表目錄 xii
1 第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 論文架構 2
2 第二章 背景知識及文獻探討 3
2.1 雷達波散射特性 3
2.2 合成孔徑雷達干涉測量 6
2.3 填海造陸 10
2.4 合成孔徑雷達地面沉降觀測 12
3 第三章 研究方法 14
3.1 研究區域概述 14
3.2 研究資料蒐集 20
3.3 干涉影像製作 24
3.4 干涉影像分析 27
4 第四章、實驗結果與分析 32
4.1 關西國際機場 32
4.2 中部國際機場 45
4.3 北九州機場 50
4.4 神戶機場 54
5 第五章、結論與未來展望 60
5.1 結論 60
5.2 未來研究方向與建議 62
6 參考文獻 64
參考文獻 [1] Raspini F, Moretti S, Fumagalli A, Rucci A, Novali F, Ferretti A, Prati C, Casagli N, “ The COSMO-SkyMed constellation monitors the costa concordia wreck. ”, Remote Sens, vol. 6, issue. 5, 3988–4002, 2014.
[2] Y. Yamaguchi, T. Moriyama, M. Ishido and H. Yamada, " Four-component scattering model for polarimetric SAR image decomposition ", IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 8, 1699-1706, Aug. 2005.
[3] de Jong, Tyler, “ Recent changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery and field validation methods ”, University of Ottawa, Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the M.Sc. Degree in Physical Geography, 2013.
[4] 黃郁晴, 「應用多時序Sentinel-1雷達影像進行崩塌地偵測」, 國立中央大學, 碩士論文, 2020.
[5] Berardino Paolo, Fornaro Gianfranco, Lanari Riccardo, Sansosti Eugenio, “A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms.”, Geoscience and Remote Sensing, IEEE Transactions, 40., 2375 – 2383, 2002.
[6] 曹可芝, 林郁宸, 「曾經的填海造陸奇蹟-日本關西國際機場」, 環境資訊中心綜合外電, 2024年1月23日.
[7] 日本關西空港, 沉下的狀況, 取自http://www.kansai-airports.co.jp/efforts/our-tech/kix/sink/sink3.html.
[8] 吳彥誼, 任玄, 「Goldstein濾波參數探討-以SNAP為例」, 航測及遙測學刊, 第二十七卷, 第4期, p213-236, 2022年12月.
[9] Zhang Yunjun, Heresh Fattahi, Falk Amelung, “Small baseline InSAR time series analysis : Unwrapping error correction and noise reduction”, Computers and Geosciences, 133, 104331, 2019.
[10] Agram, P., Simons, M., “ A noise model for InSAR time series.”, J. Geophys. Res.: Solid Earth 120 (4), 2752–2771, 2015.
[11] De Zan, F., Gomba, G., “ Vegetation and soil moisture inversion from SAR closure phases: first experiments and results. “, Remote Sens, Environ. 217, 562–572, 2018.
[12] Fattahi, H., Simons, M., Agram, P., “ InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique. “ IEEE Trans. Geosci. Remote Sens., 55 (10), 5984–5996, 2017.
[13] Gomba, G., Parizzi, A., Zan, F.D., Eineder, M., Bamler, R., “ Toward operational compensation of ionospheric effects in SAR interferograms: the split-spectrum method. “, IEEE Trans. Geosci. Remote Sens., 54 (3), 1446–1461, 2016.
[14] Liang, C., Liu, Z., Fielding, E.J., Bürgmann, R., “ InSAR time series analysis of L-band wide-swath SAR data acquired by ALOS-2. “, IEEE Trans. Geosci. Remote Sens., 56 (8), 4492–4506, 2018.
[15] Fattahi, H., Amelung, F., “InSAR uncertainty due to orbital errors.“, Geophys. J. Int., 199 (1), 549–560, 2014.
[16] Fattahi, H., Amelung, F., “InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay.”, J. Geophys. Res.: Solid Earth, 120 (12), 8758–8773, 2015.
[17] Fattahi, H., Simons, M., Agram, P., “InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique.”, IEEE Trans. Geosci. Remote Sens., 55 (10), 5984–5996, 2017.
[18] Fattahi, H., Amelung, F., “DEM error correction in InSAR time series.”, Geoscience and remote sensing., IEEE Transactions on 51 (7), 4249–4259, 2013
[19] Hetland, E., Musé, P., Simons, M., Lin, Y., Agram, P., DiCaprio, C., “Multiscale InSAR time series (MInTS) analysis of surface deformation.”, J. Geophys. Res.: Solid Earth, 117 (B2).,2012.
[20] Rousseeuw, P.J., Hubert, M., “Robust statistics for outlier detection.”, Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov., 1 (1), 73–79, 2011
[21] Fattahi, H., Amelung, F., “InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay.”, J. Geophys. Res.: Solid Earth, 120 (12), 8758–8773, 2015.
[22] 日本國土交通省中部地方整備局名古屋港灣事務所, 「名古屋港新土砂処分場の整備」, 資料取自:https://www.nagoya.pa.cbr.mlit.go.jp/6453/7202/index.html
[23] 宮地豐, 久米英輝, 今林章二, 服部俊朗, 末次広児, 日建設計シビル, 片桐雅明, 大石幹太, 吉福司, “北九州空港開港後の沈下計測結果と予測解析”, 国土交通省九州地方整備局, 土木学会西部支部研究発表会, III-099, 2011.
指導教授 任玄(Hsuan Ren) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明